HV480 Series Frequency Inverter User Manual

Introduction

First of all, thank you for choosing HV480 series inverter developed and produced by HNC Electric Limited.
HV480 series inverter is a general purpose, stable and high performance current vector inverter. Whether VF control or open loop vector control operation, it has reached the industry's leading control level. At the same time, it has random PWM control technology beyond its peers. It can run normally in severe environments such as power grid fluctuation, high temperature, high humidity and concentrated dust, and has extremely high reliability.

Besides excellent performance and reliability, HV480 is also more powerful. Simple PLC, built-in PID, multi-stage speed, high-speed pulse, communication and other operation modes can also realize regular operation and switch operation between the two motors. In addition to the standard RS485 interface, it also supports two sets of PID parameter switching, parameter one-key recovery and user parameter backup.

HV480 series frequency inverters can be used to drive various kinds of automatic production equipment such as fans, water pumps, textile, paper drawing, machine tools, packaging, food, etc.

Precautions

- This instruction manual introduces the functional characteristics and usage methods of this series of products in detail. In order to make good use of the product and ensure the personal safety of users, please read the instruction manual carefully before use. Please keep for future reference after reading.
- If there are still difficulties that cannot be solved during use, please contact our local distributors or directly contact the customer service center.
- As the Company's products will continue to improve, the information provided is subject to change without prior notice.

April 2020 V0. 1 version

Precautions for safety

The safe operation of the product depends on proper transportation, installation, operation and maintenance. Please pay attention to safety tips before carrying out these tasks.

Safety symbol description

In this instruction manual, safety matters are divided into the following two categories:

When it is used incorrectly, it will cause danger and may lead to personal injury and death.
Danger

1
When it is used incorrectly, it will cause danger and may cause slight or moderate personal injury o equipment damage.
Caution

Table of contents

Chapter I Purchase inspection 5
1.1 Inspection items 5
1.2 Nameplate description 5
1.3 Description of components of frequency inverter 6
Chapter II Installation wiring. 7
2.1 Mechanical installation.
2.1.1 Installation Conditions. 7
2.1.2 Installation Space 8
2.2 Electrical Installation. 9
2.2.1 Frequency inverter main circuit terminal description 9
2.2.2 Main circuit wiring method and wiring matters needing attention: 10
2.2.3 Frequency inverter control loop terminal description 12
2.2.4 Standard wiring diagram of frequency inverter. 14
2.2.5 Control circuit wiring mode 15
Chapter III Process operation 19
3.1 Operation keyboard and display interface. 19
3.2 Indicator light indicates run 19
3.3 key function description. 20
3.4 Methods of checking and modifying function codes indicate that. 20
3.5 Two quick search modes for function code parameters there 21
3.6 Commissioning. 21
3.7 Motor characteristic parameter setting and self- learning.22
Chapter IV Functional parameters. 24
4.1 Summary of basic functional parameters 24
4.2 Summary table of monitoring parameters. 55
Chapter V Description of parameters 57
F0 Group basic function group 57
F1 Group first motor parameters 67
F2 Group motor vector control parameters 69
F3 Group V/F control parameters 70
F4 Group output terminals 74
F5 Group input terminals 80
F6 Group start-stop control 92
F7 Group torque control 97
F8 Group auxiliary function 98
F9 Group failure and protection 104
FA Group process control PID function. 109
FB Group 2 motor parameters. 114
FC Group multi-segment instruction and simple PLC function. 115
FD Group communication parameters 120
FE Group user-defined function code 120
FF Group control optimization parameters. 120
E0 Group fault record. 120
P2 Group AIA correction 122
U0 Group monitoring parameter group 124
Chapter VI Abnormal diagnosis. 129
6.1 Fault alarm and countermeasures. 129
6.2 Matters needing attention in commissioning:132
6.3 F $0.01=2$ (V/F mode), common problem solving methods. 133
6.4 Fault analysis and countermeasures 133
Chapter VII Maintenance. 136
7.1 Maintenance and repair. 136
7.1.1 Routine maintenance 136
7.1.2 Regular maintenance 137
7.1.3 Replacement of vulnerable parts of frequency inverter 137
7.2 Storage and storage 138
Chapter VIII Peripheral equipment 139
8.1 Peripheral equipment and optional parts connection diagram. 139
8.2 Functional description of peripheral equipment 1358.2.1 No fuse circuit breaker and contactor.140
8.2.2 AC input reactor 142
8.2.3 AC output reactor 142
8.2.4 Selection of energy consumption braking unit and braking resistance 143
8.2.5 External DC reactor. 144
8.2.6 Radio noise filter. 144
8.2.7 Leakage protector 146
8.2.8 Capacitance box 146
Chapter IX Quality Assurance. 147
9.1 Quality commitment 147
Additional instructions 148
Appendix A Introduction of Communication 149
Appendix B Technical specification for HV480 series frequency inverters 160
Appendix 1 general purpose keyboard dimensions and mounting dimensions 162
Appendix II Plastic shell dimensions and mounting dimensions 163
Appendix III dimensions and mounting dimensions of sheet metal machines. 164
List of dimensions and mounting dimensions 165
Appendix D HV480 series inverter specifications. 167
Constant pressure control solution Case V0.1 for water pump and fan 169
1.1. Overview 169
2.1 Two types of pressure sensors for pump and fan control 169
3.1 Control wiring diagram 169
3.2 Setting parameters 170
4.1 The sleep wake-up function 170
Inquiry method of state parameters 172
Warranty agreement. 174

Chapter I Purchase inspection

1.1 Inspection items

Although the Company's products have been strictly inspected before leaving the factory, due to transportation or unforeseen circumstances, please carefully inspect the products after purchase.

The items and methods that must be checked and confirmed are as follows:

Confirmation content	Confirmation method
Is it consistent with the goods ordered	Please confirm the nameplate on the side of the machine
Are there any parts broken or damaged	Check the overall appearance and check for damage during transportation
Are there any loose fastening parts such as screws	If necessary, use a screwdriver to check it
Instructions, certificates of conformity and other accessories	Operating instructions and corresponding accessories

If there is any bad situation or abnormality, please contact the agent or the Company's customer service center.

1.2 Nameplate description

- Nameplate data

- Description of frequency inverter model

Note:
G1 input voltage range: Single-phase AC220V $\pm 15 \%$
G 2 input voltage range: Three-phase AC220V $\pm 15 \%$
G3 input voltage range: Three-phase AC 380~440 (-15\%~+10\%)
G4 input voltage range: Three-phase AC 460~480 (-15\%~+10\%)

Note of DC reactor:
G1: No DC reactor interface
G2: 30 kw and below, no DC reactor interface; 37 kw and above, DC reactor interface is optional.
G3: 55 kw and below, no DC reactor interface; 75 kw and above, DC reactor interface is optional.
G4: 55 kw and below, no DC reactor interface; 75 kw and above, DC reactor interface is optional.

1.3 Description of components of frequency inverter

Take HV480-022G3 as an example

Chapter II Installation wiring

2.1 Mechanical installation

Caution

- Please support the bottom of the machine body when carrying. Please use the machine with lifting rings. For machines that do not have rings, do not only take panels to prevent injury.

Please install the frequency inverter in the following application places and maintain the appropriate conditions.

2.1.1 Installation Conditions

1) It is the best to have a well ventilated room.
2) Ambient temperature $-30^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$, bare machine with $-30^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$.
3) The humidity is less than $90 \% \mathrm{RH}$, and there is no water splashing or dripping.
4) The installation foundation is firm and not easy to be vibrated, and its vibration is not more than 0.5 g .
5) Avoid direct sunlight.
6) Avoid installing in places with corrosive and combustible gases in the air.
7) Avoid installing in places with dust, oil stain and polymetallic dust in the air.
8) Avoid installing in places with electromagnetic interference sources.
9) Below 1000 meters above sea level. High altitude areas should be reduced in use, or the ambient temperature should be reduced by $0.5^{\circ} \mathrm{C}$ for every 100 meters above sea level.

2.1.2 Installation Space

The installation diagram of the frequency inverter is as follows:

Monomer installation: the size of A is larger than 150 mm , because the upper and lower directions are air ducts, the space distance should be increased.

When installing up and down: when installing the frequency inverter up and down, please press the heat insulation baffle as shown in the figure on the right.

The mechanical installation needs to pay attention to the heat dissipation problem, so please pay attention to the following points:
I Please install the frequency inverter vertically so that heat can be dissipated upwards. If there are more frequency inverters in the cabinet, it is better to install them in parallel. For occasions requiring mounting up and down, please refer to the schematic diagram on the right side to install the heat insulation deflector.
I For applications with metal dust, it is recommended to install the radiator outside the cabinet. At this time, the space inside the fully sealed cabinet should be as large as possible. Mounting bracket must be flame retardant material

2.2 Electrical Installation

- Before wiring, please make sure that the input power supply is cut OFF to avoid electric shock and fire.
- To ensure safety, grounding terminals must be reliably grounded according to the specification requirements.
- Do not connect the input power supply to the U, V, and W terminals of the output by mistake.

Caution

- Please confirm whether the AC power supply is consistent with the rated input voltage of the frequency inverter
- Do not connect the electromagnetic switch and contactor to the frequency inverter input circuit.
- Before peripheral equipment is connected to the frequency inverter, it must be confirmed that its insulation to ground is in good condition.
- Do not conduct insulation withstand voltage test on the frequency inverter so as not to damage the devices inside the machine.

2.2.1 Frequency inverter main circuit terminal description

1) Main loop terminals of 2.2 kw and below:

2) Main loop terminals of 4 kw to 7.5 kw :

3) Main loop terminals of 11 kw to 15 kw :

R S T PB $\oplus \cup V W$
4) Main loop terminals of 18.5 kw to 37 kw :

5) Main loop terminals of 45 kw to 55 kw :

6) Main loop terminals of 75 kw and above:

Description of main circuit terminal of three-phase frequency inverter

Terminal marking	Name	Description
R,S,T	Three-phase power supply input terminal	Connection point for AC input three-phase power supply
Θ, \oplus	Negative and positive terminals of DC bus	Common DC bus input point, connection point of 37 kw G machine and external brake unit of above specifications
\oplus, PB	Brake resistor connection terminal	30kw G machine and the following specifications, brake resistance connection point
$\oplus, \mathrm{P}+$	DC reactor connection terminal	
$\mathrm{U}, \mathrm{V}, \mathrm{W}$	frequency inverter output terminal	Connecting three-phase motor
Θ	Earth terminal	Earth terminal

2.2.2 Main circuit wiring method and wiring matters needing attention:

- Input power supply R, S, T: input side wiring of frequency inverter, no phase sequence requirements.
- Terminals \oplus and Θ DC bus: please note that there is still a high residual voltage in the DC bus just after the power failure, so it must wait at least 15 minutes later, or confirm that the voltage is less than 36 V before touching, otherwise there is danger of electric shock.
- When selecting an external brake unit, pay attention to the positive and negative polarity, which cannot be reversed, otherwise, the frequency inverter will be damaged or even damaged by fire. In order to prevent stray inductance from affecting the braking effect, the wiring length of the braking unit should not exceed 5 m . Twisted pair or tight double wire should be used for parallel preparation, and non-inductive resistance should also be used for braking resistance.
- Brake resistance connection terminals $\oplus, \mathrm{PB}: 30 \mathrm{~kW}$ G type machines and the following specifications are
models with built-in brake function. The wiring precautions for the brake resistance are the same as those for the output side U, V, and W : the frequency inverter capacitors or surge absorbers cannot be connected to the output side of the frequency inverter, otherwise, the frequency inverter will often be protected or even damaged. When the motor cable is too long, due to the influence of the distributed capacitance, it is easy to generate electrical resonance, thus causing the motor insulation to be damaged or causing a large leakage current to cause over current protection of the frequency inverter. When the length of the motor cable is greater than 100 m , an AC output reactor must be installed.
- Earthling terminal $\stackrel{1}{=}$: the terminal must be reliably grounded, and the resistance value of grounding wire must be less than 0.1Ω. Failure to do so will result in work of equipment is abnormal or even damaged Do not share the earthling terminal with the N terminal of the zero line of the power supply.
- See [2.2.4 inverter standard wiring diagram] for wiring method].
- Frequency inverter on/off operation should avoid frequent power-up and power-down operations (less than twice per minute) or direct start-up operations of the frequency inverter through contactors. Refer to the following table for air switch, contactor and conductor section.

2.2.3 Frequency inverter control loop terminal description

Note:

For all G1 models, G2 4.0kw and below models, G3 and G4 7.5kw and below models, there are no AI2/AI3/AO2, no X6/X7, no FM output, and no OP and CME, no +10V. The terminal "+24V" works as "OP" function as above diagram.

Category	Terminal symbol	Terminal name	Functional Description
Power supply	+10V-GND	External connection + 10v power supply	External provide +10 v power supply the maximum output current is 10 mA , which is generally used as the working power supply for external potentiometer and the resistance value of potentiometer ranges will be from $2.5 \mathrm{k} \sim 5 \mathrm{k} \Omega$
	+24V-COM	External connection $+24 v$ power supply	External provide $+24 v$ power supply, generally used as working power supply for digital input and output terminals and maximum output current for external sensor power supply: 200 mA
	OP	External power input terminal	Select +24 V or OP connection through the short connector 1 on the control panel, and the factory defaults to $+24 v$ connection. When $\mathrm{X} 1 \sim \mathrm{X} 7$ are driven by external signals, OP needs to be connected to external power supply.
Analog input	Al1-GND	Analog terminal 1	1. Input voltage range: $\mathrm{DC} 0 \mathrm{~V} \sim 10 \mathrm{~V}$ 2. Input impedance: $22 \mathrm{k} \Omega$
	Al2-GND	Analog input terminal 2	1. Input range: $\mathrm{DC} 0 \mathrm{~V} \sim 10 \mathrm{~V} / 4 \mathrm{~mA} \sim 20 \mathrm{~mA}$, determined by the selection of AI2 jumper on the control panel. 2. Input impedance: $22 \mathrm{k} \Omega$ for voltage input and 500Ω for current input.
	Al3-GND	Analog input terminal 3	1. Opt coupler isolation input can accept differential voltage input, current input, temperature detection resistance input 2. Input range: $D C \pm 10 \mathrm{~V}$ or $\pm(4 \sim 20 \mathrm{~mA})$
Digital input	X1~X7	Digital input	1. Optical coupling isolation is compatible with bipolar input 2. Input impedance: $2.4 \mathrm{k} \Omega$ 3. Voltage range during level input: $9 \mathrm{~V} \sim 30 \mathrm{~V}$
	X5	High-speed pulse input terminal	Besides the features of $\mathrm{X} 1 \sim \mathrm{X} 4$, it can also be used as a high-speed pulse input channel. Highest input frequency: 100 kHz ; Voltage range: $9 \mathrm{~V} \sim 30 \mathrm{~V}$
Analog output	AO1-GND	Analog output 1	The AO1 jumper on the control board determines the voltage or current output. Output voltage range: $0 \mathrm{~V} \sim 10 \mathrm{~V}$ output current range: $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$
	AO2-GND	Analog output 2	The AO2 jumper on the control board determines the voltage or current output. Output voltage range: $0 \mathrm{~V} \sim 10 \mathrm{~V}$ output current range: $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$
Digital output	DO-CME	Digital output 1	Optical coupling isolation, bipolar open collector output voltage range: $0 \mathrm{~V} \sim 24 \mathrm{~V}$ output current range: $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$ Note: CME of digital output location is internally isolated from com of digital input location, but at the factory it is shorted to COM via short connector 2CME on the control board (DO1 is driven by +24 v by default at this time). When DO1 is driven by an external power supply, the short connector 2 must be unplugged.
	FM- COM	High speed pulse output	Constrained by function code F4-00" FM terminal output mode selection" as high-speed pulse output, the highest frequency is 100 kHz ; When it is exported as open collector, it is the same as DO1 specification.
Communication interface	485+ 485-	Rs485 communication interface terminal	Input and output signal terminals of Modbus - RTU protocol communication
Relay output	T/A-T/B	Normally closed terminal	Contact drive capability: AC250V, 3A, COSø=0.4. DC 30V, 1A
	T/A-T/C	Normally open terminal	

2.2.4 Standard wiring diagram of frequency inverter

Note:

For all G1 models, G2 4.0kw and below models, G3 and G4 7.5kw and below models, there are no $\mathrm{Al} 2 / \mathrm{Al} 3 / \mathrm{AO} 2$, no X6/X7, no FM output, and no OP and CME, no +10V. The terminal "+24V" works as "OP" function as above diagram.

Precautions:

1) Terminal means main circuit terminal and O means control circuit terminal.
2) The 30 kW G machine and the following specifications have built-in regenerative braking function, the 37 kW G machine and the above specifications do not have PB terminals. When regenerative braking function is required, an additional energy consumption braking unit shall be installed.

2.2.5 Control circuit wiring mode

a) Analog input terminal because weak analog voltage signals are particularly susceptible to external interference, shielded cables are generally required, and the wiring distance should be as short as possible, not exceeding 20 m . As shown in the figure, when some analog signals are seriously disturbed, filter capacitors or ferrite cores need to be added to the analog signal source side:

Wiring diagram of analog input terminal

Schematic diagram of processing and wiring for analog input terminals
b) Digital input terminal: Shielded cables are generally required, and the wiring distance should be as short as possible, not exceeding 20 m . When active driving mode is selected, necessary filtering measures should be taken for crosstalk of power supply. It is recommended to use contact control square.

- Leakage wiring

Leakage (NPN) connection method of 011G3 and above with internal power supply

This is one of the most common wiring methods which use internal DC24V. If use an external DC24V power supply, NPN type wiring method as below.

- For 011G3 and above models, the short connector between "+24V" and "OP" and the short connector between "COM" and "CME" must be removed. The positive electrode of the external power supply is connected to "OP" and the negative electrode of the external power supply is connected to "CME".
- For all G1 models, G2 4.0kw and below models, G3 and G4 7.5kw and below models, ,there're three jumpers J9\&J10\&J11 on control board, their default position is as below, and the default is for NPN type which use internal DC24V as power supply.

Use internal DC24V, NPN type
In this method, the voltage on terminal " $\mathbf{+ 2 4 V}$ " is 24 V , the voltage on terminal "COM" is 0 V , and when output terminal "DO" is effected, the "DO" is short to terminal "COM".

So if you need "DO" to active an relay, please connect the relay between "DO" and "+24V".

* If use an external DC 24 V power supply, jumper position as below:

Use external DC24V, NPN type
The positive electrode of the external power supply is connected to "+24V" and the negative electrode of the external power supply is connected to "COM".

In this method, the voltage on terminal " $\mathbf{+ 2 4 V}$ " is 24 V , the voltage on terminal "COM" is 0 V , and when output terminal "DO" is effected, the "DO" is short to terminal "COM".

So if you need "DO" to active an relay, please connect the relay between "DO" and "+24V" .

Multiple frequency inverters digital input and connection leakage type connection mode
Multiple frequency inverters digital input terminals cannot be connected and used, otherwise it may cause incorrect operation of the input terminals. If it is needed that the input terminals of different frequency inverters are connected in parallel, the diode is connected in series at the X terminal and the wiring is as shown above and the diode needs to meet IF $>10 \mathrm{~mA}, ~ U F<1 \mathrm{~V}$

- Source wiring

Source type (PNP) wiring method of 011G3 and above which use internal DC24V
This is one of the most common wiring methods which use internal DC24V for 011G3 and above.
If use an external DC24V power supply for 011G3 and above, PNP type wiring method as below.

- It must remove the short connector of 24 V and OP , and connect COM and OP together, and also remove the short-circuit connector between COM and CME, and the external trigger signal is connected to the corresponding DI.
- For all G1 models, G2 4.0kw and below, G3 and G4 7.5kw and below.

PNP type wiring method as below.

* If you use internal DC24V as power supply, jumpers position as below:

Use internal DC24V, PNP type
In this method, the voltage on terminal " $\mathbf{+ 2 4 V}$ " is 0 V , the voltage on terminal "COM" is 24 V , so you need short the corresponding DI terminals and "COM" together.

When output terminal "DO" is effected, the "DO" is short to terminal "+24V".
So if you need "DO" to active an relay, please connect the relay between "DO" and "COM".

* If use an external DC24V power supply, jumper position as below:

Use external DC24V, PNP type
The positive electrode of the external power supply is connected to "COM" and the negative electrode of the external power supply is connected to " $\mathbf{+ 2 4 V}$ ". and the external trigger signal is connected to the corresponding DI.

In this method, the voltage on terminal " +24 V " is 0 V , the voltage on terminal "COM" is 24 V , and when output terminal "DO" is effected, the "DO" is short to terminal " $\mathbf{+ 2 4 V}$ ".

So if you need "DO" to active an relay, please connect the relay between "DO" and "COM" .
C) Digital output terminal: When the digital output terminal needs to drive the relay, absorption diodes should be installed on both sides of the relay coil. Otherwise, it is easy to cause damage to the DC 24 V power supply and the driving capacity is not more than 50 mA .

Note: as shown in the figure, the polarity of the absorption diode must be installed correctly. Otherwise, when the digital output terminal has output, the DC 24 V power supply will be burnt out immediately.

DO schematic of 011G3 and above models

Chapter III Process operation

3.1 Operation keyboard and display interface

The operating keyboard of the series of frequency inverters can modify the functional parameters of the frequency inverter, monitor the working state of the frequency inverter, and control the operation of the frequency inverter (starting and stopping). Its appearance and functional area are shown in the following figure:

3.2 Indicator light indicates run

RUN: When the light is on, it indicates that the frequency inverter is in operation, and when the light is off, it indicates that the frequency inverter is in shutdown state
LOCAL/REMOT: Keyboard operation, terminal operation and remote operation (communication control) indicator light
FWD/REV: Positive and negative rotation indicator light, which indicates that it is in reverse rotation when the light is on
TUNE/TC: Tuning / torque control / fault indicator light, light on indicates torque control mode, light slow flashing indicates tuning state, and light flash indicates fault state.

The unit indicator lamp is used to indicate the unit of the current display data (o marks off, • marks on). There are the following units:

Hz frequency unit
A current unit
\checkmark voltage unit
RMP rotational speed unit
\% percentage

Total of 5 - bit LED displays can display the set frequency, output frequency, various monitoring data and alarm codes, etc.

3.3 key function description

Key	Key name	Functionalities
	Menu key	Enter or exit the first-level menu and view the function sequence code
	Set key	Enter the menu screen step by step and set parameters for confirmation
(a)Ick)	Menu mode select key	Switch different menu modes according to F0-43 median value (the default is a menu mode)
	Shift key	Under the shutdown display interface and the operation display interface, the display parameters can be selected according to the loop. When modifying a parameter, you can select the modification bit of the parameter.
$\frac{106}{K}$	Multifunction selection key	According to F0-07, function switching can be defined as command source or fast direction switching.
	Run key	When it is set to keyboard control, forward rotation operation instruction will be issued to start the frequency inverter operation.
	Stop / reset key	When running, pressing this key can be used to stop the running operation. When the fault alarm is on, it can be used to reset the operation. And the characteristics of the key are restricted by the function code F0-08.
\sim	Increment key	Increment of data or function code
	Descending key	Decrement of data or function code

3.4 Methods of checking and modifying function codes indicate that

The operation panel of this series of frequency inverters uses a three-level menu structure to set parameters and other operations.

The three-level menus are: function parameter group (I - level menu) \rightarrow function code (II - level menu) \rightarrow function code setting value (level III menu).

Description: press PRG key or enter key to return to the level II menu when operating the level II menu. The difference between the two is: press enter to save the setting parameters and return to the secondary menu, and automatically transfer to the next function code; while pressing PRG key is to abandon the current parameter modification and directly return to the secondary menu of the current function code serial number.
Example: example of setting function code F3-02 to 15.00 Hz from 10.00 Hz

In the level III menu state, if the parameter does not flash, it indicates that the function code cannot be modified. Possible reasons are:

This function code is an unmodifiable parameter, such as frequency inverter type, actual detection parameter, operation record parameter, etc.

This function code cannot be modified in the running state. It can only be modified after shutdown.

3.5 Two quick search modes for function code parameters there

Are many function codes in this series. In order to facilitate quick search by users, the frequency inverter also provides two quick search methods for function codes:

1) Selecting and customizing common function codes and users, up to 30 of which can be customized, to form a user-defined code function code set; the user determines the function parameters to be displayed through the FE group
2) Automatically arranges the function codes different from the factory values and the frequency inverters for quick selection by the user;

This provides three function code lookup methods, the display code of each parameter display method is:

Parameter display mode	Display
Function parameter mode	$--\mathrm{F}--$
User - customized parameter method	$--\mathrm{U}-$
The method for changing parameters by the users	$--\mathrm{C}-$

The display modes of the three function codes are switched by the quick key on the panel (F0-43 is set to 11), and the search or modification method after entering the function codes of each group is the same as that of the previous keyboard operation:

3.6 Commissioning

The series of frequency inverters has three operation control modes, which including keyboard control, terminal control and RS - 485 control. Its control can be selected by setting the function code F0-02.

Through keyboard operation, the function code F0-02 = 0, i.e. the panel start-stop control mode, presses the run key on the keyboard, and the frequency inverter starts to run (the run indicator lights up); When the frequency inverter is running, press the stop key on the keyboard to stop the frequency inverter (the run indicator goes out)

3.7 Motor characteristic parameter setting and self - learning

When the frequency inverter operates in the "vector control" (F0-01 = 0 or 1) mode, it is highly dependent on accurate motor parameters. This is one of the important differences from the "VF control" (F0-01 = 2) mode. In order for the frequency inverter to have good driving performance and operating efficiency, the frequency inverter must obtain the preparation parameters of the controlled motor.

Motor 1 parameter	Parameter description	Description
F1-01 F1-05	Rated power / voltage / current / frequency / speed of motor	Model parameters, manual input
F1-06 F1-20	Equivalent stator resistance, inductance, rotor inductance, etc. inside the motor	Tuning parameter

Methods for obtaining the internal electrical parameters of the controlled motor by the frequency inverter include dynamic identification, static identification, manual input of motor parameters, etc.

Identification method	Application	Identification effect		
No - load dynamic identification	Suitable for asynchronous motors. Occasions where the motor and the application system are conveniently separated	Best		
On - load dynamic identification	Suitable for asynchronous motors. Where the motor is not easily separated from the application system	May		
Static identification	It is only suitable for asynchronous motors, where it is difficult to separate the motor from the load and dynamic identification of operation is not allowed	Poor		
Manually parameters	It is only suitable for asynchronous motors. When the motor is difficult to separate from the application system,	May		
the parameters of the same type of electric machine				
successfully identified by the frequency inverter are				
copied and input into the corresponding function codes				
of F1-00~F1-10			\quad	Prer\|
:---				

Automatic tuning of motor parameters (motor self - learning) steps are as follows:

The following explains the parameter identification method of the default motor 1 as an example. The identification method of the motor 2 is the same as that of the default motor 1 , except that the function code number needs to be changed in a targeted way:

- If the motor can be completely disconnected from the load, under the condition of power failure, the motor can be mechanically separated from the load so that the motor can rotate freely without load.
- After power on, first select the frequency inverter command source (F0-02) as the operation panel command channel.
- Accurately input the nameplate parameters of the motor (for example, F1-00~F1-05). Please input the parameters of the lower surface according to the actual parameters of the motor (according to the current motor selection)
- If it is an asynchronous motor, then F1-29 (tuning selection, for motor 2, it should be FB- 29 function code) please select 2 (asynchronous motor fully tuned), press enter to confirm, at this point, the keyboard shows STUDY, as shown in the following figure:

Then press the run key on the panel, the frequency inverter will drive the motor to accelerate and decelerate,
rotate forward and backward, the operation indicator light will illuminate, and the operation duration will be recognized for about 2 minutes. When the above display information disappears, the normal parameter display state will be returned, indicating that the tuning is completed. After the complete tuning, the frequency inverter will automatically calculate the following parameters of the motor:

F1-06: Asynchronous motor stator resistance
F1-07: Asynchronous motor rotor resistance
F1-08: Induction motor leakage inductance
F1-09: Induction motor mutual inductance resistance
F1-10: Asynchronous motor no-load current
If the motor cannot be completely disconnected from the load, F1-29 (motor 2 is FB - 29) please select 1 (asynchronous motor is still tuned), and then press the run key on the panel to start the motor parameter identification operation.

Chapter IV Functional parameters

F0-46 is set to a value other than 0, i.e. the parameter protection password is set. In the function parameter mode and the user change parameter mode, the parameter menu cannot be entered until the password is correctly entered. To cancel the password, F0-46 needs to be set to 0 .
Group F and group P are basic functional parameters, and group U is monitoring functional parameters.

4.1 Summary of basic functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F0 group basic functions				
F0-00	Menu mode selection	Bit: monitoring group U0 0 : not displayed 1: display Ten digits: special parameter group P 0 : not displayed 1: display	11	F000H
F0-01	Control operation mode	0: no PG open loop vector control 1 1: no PG open loop vector control 2 2: V/F control	2	F001H
F0-02	Run command channel selection	0 : operation panel 1: terminals 2: communication	0	F002H
F0-03	Main frequency source X selection	0 : Number setting 1 1: Number setting 2 2: AI1 3: Al2 4: AI3 5: X5 pulse given 6: multi-segment instruction 7: simple PLC 8: PID 9: communication given	1	F003H
F0-04	Anti - reverse selection	0: allowed 1: forbidden (0 frequency operation when reverse command is applied)	0	F004H
F0-05	Phase sequence selection	0 : standard 1: carry out phase sequence exchange. (rotation direction changes)	0	F005H
F0-06	Operation selection when power is on	0 : allowed (when the power supply is turned on and there is an operation command, the operation will start.) 1: prohibit (even if there is an operation command while the power supply is on, the motor selection is also prohibited.)	0	F006H
F0-07	JOG.K key function selection	0: JOG.K is invalid 1: operation panel command channel and remote command channel (terminal command channel or communication command channel) switch 2: forward and reverse switching 3: JOG forward 4: reverse JOG	0	F007H

Function code	Name	Setting range	Factory value	Communica tion address
F0-08	STOP/RESET key function	0 : STOP / RES key stop function is valid only in keyboard operation mode 1: STOP / RES key stop function is valid in any operation mode	1	F008H
F0-09	Preset frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency (F0-16)	50.00 Hz	F009H
F0-10	Acceleration time 1	0.00 s ~ 650.00 s(F0-12 $=2$) $0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}(\mathrm{FO}-12=1)$ 0s~65000s(FO-12=0)	Model determina tion	FOOAH
F0-11	Deceleration time 1	0.00s~650.00s(FO-12=2) $0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}(\mathrm{FO}-12=1)$ 0s~65000s(F0-12=0)	Model determina tion	F00BH
F0-12	Acceleration / deceleration time unit	0: 1 second 1: 0.1 second 2: 0.01 second	1	FOOCH
F0-13	Acceleration and deceleration time reference frequency	$\begin{aligned} & \text { 0: maximum frequency (FO - 12) } \\ & \text { 1: set frequency } \\ & \text { 2: } 100 \mathrm{~Hz} \end{aligned}$	0	F00DH
F0-14	Shutdown mode	0 : slow down and stop 1: free parking	0	F00EH
F0-15	Droop control	$0.00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}$	0.00 Hz	FOOFH
F0-16	Maximum frequency	$\begin{aligned} & 50.00 \mathrm{~Hz} \sim 500.00 \mathrm{~Hz}(\mathrm{FO}-25=2) \\ & 50.0 \mathrm{~Hz} \sim 3200.0 \mathrm{~Hz}(\mathrm{FO} 0-25=1) \end{aligned}$	50.00 Hz	F010H
F0-17	Upper frequency source	0: F0 - 18 settings 1: AI1 2: AI2 3: AI3 4: X5 pulse setting 5: communication given	0	F011H
F0-18	Upper limiting frequency	Lower frequency FO-20~maximum frequency F0-16	50.00 Hz	F012H
F0-19	Upper frequency offset	$0.00 \mathrm{~Hz} \sim$ maximum frequency FO-16	0.00 Hz	F013H
F0-20	Lower limit frequency	$0.00 \mathrm{~Hz} \sim$ upper frequency FO-18	0.00 Hz	F014H
F0-21	Operating mode with set frequency lower than lower limit frequency	0 : the following limited frequency operation 1: shutdown 2: zero speed operation	0	F015H
F0-22	Carrier frequency	$0.5 \mathrm{kHz} \sim 16.0 \mathrm{kHz}$	Model determina tion	F016H
F0-23	Carrier frequency adjusts with load	$\begin{aligned} & \text { 0: no } \\ & \text { 1: yes } \end{aligned}$	1	F017H
F0-24	LED shutdown operation display selection	0 : shutdown operation display separated 1: stop operation display does not separate	0	F018H
F0-25	Frequency decimal point	1: one decimal point 2: two decimal points	2	F019H
F0-26	Digital setting frequency shutdown memory selection	0 : no memory 1: memory	1	F01AH

Chapter IV Functional parameters

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F0-38	Parameter 2 displayed at run time	$0000 ~$ FFFF		F026H
F0-39	Parameter displayed at stop	0000~FFFF	33	F027H
F0-40	speed display coefficient	$0.0001 \sim 6.5000$	3.0000	F028H
F0-41	speed display decimal point setting	Bit: U0-14 decimal places 0: 0 decimal places 1: 1 decimal place 2: 2 decimal places 3: 3 decimal places 10 bits: U0-19 / U0-29 decimal places 1: 1 decimal places 2: 2 decimal places	21	F029H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F0-43	Special menu selection	Bit: user customized parameter group display selection 0 : not displayed 1: display 10 bits: user changes parameter group display selection 0 : not displayed 1:Display	00	F02BH
F0-44	Parameter access level	0: modifiable, monitor able 1: all cannot be modified and only monitored	0	F02CH
F0-45	Keyboard knob sensitivity	0~3	2	F02DH
F0-46	User password	0~65535	0	F02EH
F0-47	Parameter initialization	0 : no operation 1001: restore factory parameters, excluding electrical machine parameters 1002: resetting recording information	0	F02FH
F1 first motor parameter				
F1-01	Rated power of asynchronous motor	0.1kW ~ 1000.0kW	Model determina tion	F101H
F1-02	Rated voltage of asynchronous motor	1V ~2000V	Model determina tion	F102H
F1-03	Rated current of asynchronous motor	0.01A~655.35A (inverter power <=55kW) $0.1 \mathrm{~A} \sim 6553.5 \mathrm{~A}$ (frequency inverter power >55 kW)	Model determina tion	F103H
F1-04	Rated frequency of asynchronous motor	$0.01 \mathrm{~Hz} \sim$ maximum frequency		F104H
F1-05	Rated speed of asynchronous motor	1rpm~65535rpm	Model determina tion	F105H
F1-06	Stator resistance R1	$\begin{aligned} & 0.001 \Omega \sim 65.535 \Omega \text { (frequency inverter power } \\ & <=55 \mathrm{~kW} \text {) } \\ & 0.0001 \sim 6.5535 \text { (frequency inverter power } \\ & >55 \mathrm{~kW} \text {) } \end{aligned}$	Tuning parameter	F106H
F1-07	Rotor resistance R2	$\begin{aligned} & 0.001 \Omega \sim 65.535 \Omega \text { (frequency inverter power } \\ & <=55 \mathrm{~kW} \text {) } \\ & 0.0001 \sim 6.5535 \text { (frequency inverter power } \\ & >55 \mathrm{~kW} \text {) } \end{aligned}$	Tuning parameter	F107H
F1-08	Leakage reactance L1	```\(0.01 \mathrm{mH} \sim 655.35 \mathrm{mH}\) (frequency inverter power <=55kW) \(0.001 \sim 65.535 \mathrm{mH}\) (frequency inverter work rate > 55 kW)```	Tuning parameter	F108H
F1-09	Mutual inductance resistance L2	$\begin{aligned} & 0.1 \mathrm{mH} \sim 6553.5 \mathrm{mH} \text { (frequency inverter power } \\ & <=55 \mathrm{~kW} \text {) } \\ & 0.01 \mathrm{mH} \sim 655.35 \mathrm{mH} \text { (frequency inverter power } \\ & >55 \mathrm{~kW} \text {) } \end{aligned}$	Tuning parameter	F109H
F1-10	No-load current 10	$\begin{aligned} & \text { 0.01A~F1-03 (frequency inverter power } \\ & <=55 \mathrm{~kW} \text {) } \\ & 0.1 \mathrm{~A} \sim \text { F1-03 (frequency inverter power } \\ & >55 \mathrm{~kW} \text {) } \end{aligned}$	Tuning parameter	F10AH

Function code	Name	Setting range	Factory value	Communica tion address
F1-29	Parameter self - tuning	0 : no operation 1: simple static self - tuning 2: rotational self - tuning 3. advanced static self - tuning	0	F11DH
F2 group of first motor vector control parameters				
F2-00	ASR_P1	1~100	30	F200H
F2-01	ASR_I1	0.01s $\sim 10.00 \mathrm{~s}$	0.50s	F201H
F2-02	Gain switching frequency of ASR 1	0.00~F2-05	5.00 Hz	F202H
F2-03	ASR_P2	1~100	20	F203H
F2-04	ASR_12	0.01s ~ 10.00 s	1.00s	F204H
F2-05	Gain switching frequency of ASR 2	F2-02 ~ maximum frequency	10.00 Hz	F205H
F2-06	Vector controlled slip gain	50\% - 200\%	100\%	F206H
F2-07	Velocity loop filtering time	0.000~1.000s	0.050s	F207H
F2-09	Torque upper limit source under speed control mode	0 : function code F2-10 setting 1: Al1 2: Al2 3: Al3 4: X5 pulse 5: communication given 6: $\operatorname{MIN}(\mathrm{Al} 1, \mathrm{Al} 2)$ 7: MAX(AI1,AI2) The full scale of the 1-7 option corresponds to F2-10	0	F209H
F2-10	Numerical setting of upper limit of torque under speed control mode	0.0\%-200.0\%	150.0\%	F20AH
F2-18	Selection of weak magnetic mode in vector mode	0 : not enabled 1: deceleration only enabled 2. constant speed and deceleration enable	0	F212H
F2-19	Over modulation enable selection	0 : not enabled 1: enable	0	F213H
F2-20	Over modulation coefficient	100: 110\%	100	F214H
F2-21	Weak magnetic moment coefficient	50: 200\%	100	F215H

Function code	Name	Setting range	Factory value	Communica tion address
F3 group V/F control parameters				
F3-00	V/F curve setting	0 : straight line V/F 1: multi-segment V/F (F3-03~F3-08) 2: square V/F 3: 1.2 Exponentiation V/F 4: 1.4 Exponentiation V/F 6: 1.6 Exponentiation V/F 8: 1.8 Exponentiation V/F 9: reservations 10: VF complete separation mode 11: VF semi-separation mode	0	F300H
F3-01	Torque increase	$\begin{aligned} & 0.0 \% \text { : (automatic torque boost) } \\ & 0.1 \% \sim 30.0 \% \end{aligned}$	\qquad	F301H
F3-02	Torque boost cutoff frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F302H
F3-03	V/F frequency point F0	$0.00 \mathrm{~Hz} \sim$ F3-05	0.00 Hz	F303H
F3-04	V/F voltage point V0	0.0\% $\sim 100.0 \%$	0.0\%	F304H
F3-05	V/F frequency point F1	F3-03~F3-07	0.00Hz	F305H
F3-06	V/F voltage point V1	0.0\% $\sim 100.0 \%$	0.0\%	F306H
F3-07	V/F frequency point F2	F3-05 ~ rated frequency of motor (F1-04)	0.00 Hz	F307H
F3-08	V/F voltage point V2	0.0\% $\sim 100.0 \%$	0.0\%	F308H
F3-09	V/F slip compensation gain	0.0\% ~ 200.0\%	0.0\%	F309H
F3-10	V/F over-excitation gain	$0 \sim 200$	64	F30AH
F3-11	V/F oscillation suppression gain	$0 \sim 100$	Model determina tion	F30BH
F3-12	Oscillation suppression gain mode	0~4	3	F30CH
F3-13	Voltage selection for V/F separation	0 : numerical setting (F3-14) 1: Al1 2: AI2 3: Al3 4: PULSE pulse setting (X5) 5: multi-segment instruction 6: simple PLC 7: PID 8: communication given note: 100.0 \% corresponding motor rated voltage	0	F30DH
F3-14	V/F separated voltage number word setting	OV ~ rated voltage of motor	OV	F30EH
F3-15	V/F separation voltage acceleration time	0.0s~1000.0s Note: indicates the time when 0 v changes to the rated voltage of the motor	0.0s	F30FH

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F3-16	V/F separation voltage deceleration time	0.0s $\sim 1000.0 \mathrm{~s}$ Note: indicates the time when 0v changes to the rated voltage of the motor	0.0 s	F310H
F3-17	V/F separation shutdown option	0: frequency / voltage independently reduced to 0 $1:$ the frequency decreases again after the voltage decreases to 0	0	F311H

Function code	Name	Setting range	Factory value	Communica tion address

F4 group output terminals

F4-00	FM terminal output mode selection	0 : pulse output 1. switch output	0	F400H
F4-01	FM switch output power selection	0 : no output 1: the frequency inverter is running 2: fault output (fault for free shutdown) 3: frequency level detection FD t1 output 4: frequency arrival 5: zero speed operation (no output during shutdown) 6: motor overload pre - alarm 7: frequency inverter overload pre - alarm 8: set the count value to reach 9: specified count value arrives 10: length arrives 11: PLC cycle completed 12: accumulated operating time arrives 13: frequency limit 14: torque limit 15: operational readiness 16: Al1>AI2 17: upper limit frequency reached 18: lower limit frequency reached (operation related) 19: under voltage state output 20: communication settings 21: positioning completed (reserved) 22: positioning approach (reserved) 23: zero speed operation in 2 (output when shutdown) 24: cumulative power-on time arrives 25: frequency level detection FD T2 output 26: frequency 1 reaches output 27: frequency 2 reaches output 28: current 1 reaches output 29: current 2 reaches output 30: arrive at output regularly 31: Al1 input overrun 32: falling load 33: reverse operation 34: zero current state 35: module temperature reached 36: output current exceeds limit 37: lower limit frequency reached (shutdown also output) 38: alarm output (all faults) 39: motor over temperature pre - alarm 40: the running time has arrived 41: fault output (fault for free shutdown And under-voltage does not output) 42: AI1 is lower than lower limit output, lower limit F4-37 43: Al1 above upper limit output, upper limit F4 - 38 44: AI2 is lower than lower limit output, lower limit F4-37 45: AI2 above upper limit output, upper limit F4 -	0	F401H
F4-02	Selection of power function of control panel relay (T/A-T/B-T/C)		2	F402H
F4-04	DO1 output function selection		1	F404H

Function code	Name	Setting range	Factory value	Communica tion address
F4-06	FM pulse output function selection	0 : operating frequency 1: set frequency 2: Output current 3: output torque (absolute value of torque) 4: output power 5: Output voltage 6: PULSE input (100.0 \% corresponding 100.0 kHz) 7: AI1 8: Al2 9: Al3 10: length 11: remember values 12: communication settings 13: motor speed 14: output current (100.0% corresponding 1000.0A) 15: output voltage (100.0% corresponding 1000.0V) 16: output torque (actual torque value)	0	F406H
F4-07	AO1 output function selection		0	F407H
F4-08	AO2 output function selection		1	F408H
F4-09	FM pulse output maximum frequency	$0.01 \mathrm{kHz} \sim 100.00 \mathrm{kHz}$	50.00 kHz	F409H
F4-10	AO1 zero offset coefficient	-100.0\% $\sim+100.0 \%$	0.0\%	F40AH
F4-11	AO1 gain	-10.00~+10.00	1.00	F40BH
F4-12	AO2 zero offset coefficient	-100.0\% $\sim+100.0 \%$	0.0\%	F40CH
F4-13	AO2 gain	-10.00~+10.00	1.00	F40DH
F4-17	Delay time of FM switch output	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F411H
F4-18	Relay 1 output delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F412H
F4-19	Relay 2 output delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F413H
F4-20	DO1 output delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F014H
F4-21	DO2 output delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F015H
F4-22	DO output terminal active state selection	0 : positive logic 1. reverse logic Bit: FM 10 bits: relay 1 100 bits: relay 2 1000 bits: DO1 10,000 bits: DO2	00000	F416H
F4-24	Frequency detection value (FDT1)	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F418H
F4-25	Frequency detection lag value (FDT1)	0.0 \% ~ 100.0 \% (FDT1 level)	5.0\%	F419H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F4-26	Frequency detection value (FDT2)	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F41AH
F4-27	Frequency detection lag value (FDT2)	0.0 \% 100.0 \% (FDT2 level)	5.0\%	F41BH
F4-28	Frequency reaches detection width	0.0 \% 100.0 \% (maximum frequency)	0.0\%	F41CH
F4-29	Random arrival frequency check value 1	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F41DH
F4-30	Random arrival frequency detects width 1	0.0 \% 100.0 \% (maximum frequency)	0.0\%	F41EH
F4-31	Random arrival frequency check value 2	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F41FH
F4-32	Random arrival frequency detects width 2	0.0\% ~ 100.0 \% (maximum frequency)	0.0\%	F420H
F4-33	Arbitrarily reaching current 1	0.0 \% ~ 300.0 \% (rated current of motor)	100.0\%	F421H
F4-34	The width of current 1 is arbitrarily reach	0.0 \% ~ 300.0 \% (rated current of motor)	0.0\%	F422H
F4-35	Arbitrarily reaching current 2	0.0 \% 300.0 \% (rated current of motor)	100.0\%	F423H
F4-36	The width of current 2 is arbitrarily reach	0.0 \% ~ 300.0 \% (rated current of motor)	0.0\%	F424H
F4-37	Al1 input voltage protection value lower limit	0.00V \sim F4-38	3.10 V	F425H
F4-38	Al1 upper limit of input voltage protection value	F4-37 $\sim 10.00 \mathrm{~V}{ }^{\circ} \mathrm{C}$	6.80 V	F426H
F4-39	Module temperature reached	$0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	F427H
F4-40	Zero current detection level	0.0\% ~ 300.0\% 100.0 \% corresponding motor rated current	5.0\%	F428H
F4-41	Zero current detection delay time	0.01s~600.00s	0.10s	F429H
F4-42	Output current overrun value	0.0% (no detection) $0.1 \% \sim 300.0 \%$ (rated current of motor)	200.0\%	F42AH
F4-43	Output current overrun detection delay time	0.00s~600.00s	0.00s	F42BH

F5 group input terminals

F5-00	X1 input terminal function selection	0 : no function 1: forward run FWD or run command 2: reverse operation REV or reverse operation direction (note: when set to 1 and 2, it should be used in conjunction with F5-11. for details, please refer to the description of function code parameters) 3: three-wire operation control 4: Forward jog (FJOG 5: reverse jog (RJOG) 6: terminal UP	1	F500H
F5-01	X2 input terminal function selection		2	F501H

Function code	Name	Setting range	Factory value	Communica tion address
F5-02	X3 input terminal function selection	7: terminal DOWN 8: free parking 9: fault reset (RESET) 10: suspension of operation 11: external fault normally open input 12: multi-segment command terminal 1 13: multi-segment command terminal 2 14: multi-segment command terminal 3	9	F502H
F5-03	X4 input terminal function selection	16: acceleration and deceleration time selection terminal 1 17: acceleration and deceleration time selection terminal 2 18: frequency source switching 19: UP / DOWN setting cleared (terminal keyboard) 20: control command switching terminal 1	12	F503H
F5-04	X5 input terminal function selection	21: prohibition of acceleration and deceleration 22: PID pause 23: PLC status reset 24: frequency swing suspended 25: counter input 26: counter reset 27: length count input	13	F504H
F5-05	X6 input terminal function selection	29: torque control prohibited 30: PULSE frequency input (valid only for X5) 31: reservations 32: direct current brake immediately 33: external fault normally closed input 34: frequency modification enabled	14	F505H
F5-06	X7 input terminal function selection	36: external parking terminal 1 37: control command switching terminal 2 38: PID integral suspended 39: frequency source X switches to preset frequency 40: frequency source Y and preset frequency switch 41: motor selection terminal 1 42: reservations 43: PID parameter switching 44: user-defined failure 1 45: user-defined failure 2 46: speed control / torque control switching 47: Emergency stop button 48: External parking terminal 2 49: deceleration DC brake 50: this run time is cleared 51: 2 - wire / 3 - wire switch 53: zero speed function 54: Frequency source switching 2 55: frequency source switch to multi-segment speed	8	F506H
F5-10	X terminal filtering time	0.000s $\sim 1.000 \mathrm{~s}$	0.010s	F50AH
F5-11	Terminal command mode	0: 2 - wire type 1 1: 2 - wire type 2 2: 3 - wire type 1 3: 3 - wire type 2	0	F50BH
F5-12	Terminal UP / DOWN change rate	$0.001 \mathrm{~Hz} / \mathrm{s} \sim 65.535 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	F50CH

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F5-13	PULSE minimum input	$0.00 \mathrm{kHz} \sim \mathrm{F} 5-15$	0.00 kHz	F50DH
F5-14	PULSE minimum input correspondence setting	-100.0\% ~ 100.0\%	0.0\%	F50EH
F5-15	PULSE maximum input	F5-13~100.00kHz	50.00 kHz	F50FH
F5-16	PULSE maximum input setting	-100.0\% ~ 100.0\%	100.0\%	F510H
F5-17	PULSE filtering time	0.00s ~ 10.00 s	0.10 s	F511H
F5-18	X1 delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F512H
F5-19	X2 delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F513H
F5-20	X3 delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	F514H
F5-21	X terminal valid logic 1	0 : active high 1: low level valid Bit: X1 10 bits: X2 10 bits: X3 1000 bits: X4 10,000 bits: X5	00000	F515H
F5-22	X terminal valid logic2	0 : active high 1: low level valid Bit: X6 10 bits: X7	00000	F516H
F5-24	Al curve 1 minimum input	0.00V \sim F5-26	0.00 V	F518H
F5-25	Al curve 1 minimum input corresponding settings	-100.0\% $\sim+100.0 \%$	0.0\%	F519H
F5-26	Al curve 1 maximum input	F5-24~+10.00V	10.00V	F51AH
F5-27	Al curve 1 maximum input corresponding setting	-100.0\% $\sim+100.0 \%$	100.0\%	F51BH
F5-28	Al1 filtering time	0.00s $\sim 10.00 \mathrm{~s}$	0.10s	F51CH
F5-29	Al curve 2 minimum input	0.00V \sim F5-31	0.00 V	F51DH
F5-30	Al curve 2 minimum input corresponding settings	-100.0\% $\sim+100.0 \%$	0.0\%	F51EH
F5-31	Al curve 2 maximum input	F5-29~+10.00V	10.00V	F51FH
F5-32	Al curve 2 maximum input corresponding setting	-100.0\% $\sim+100.0 \%$	100.0\%	F520H
F5-33	Al2 filtering time	0.00s $\sim 10.00 \mathrm{~s}$	0.10 s	F521H
F5-34	Al curve 3 minimum input	-10.00V \sim F5-36	-10.00V	F522H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F5-35	Al curve 3 minimum input corresponding settings	-100.0\% $\sim+100.0 \%$	-100.0\%	F523H
F5-36	Al curve 3 maximum input	F5-34~+10.00V	10.00V	F524H
F5-37	Al curve 3 maximum input corresponding setting	-100.0\% $\sim+100.0 \%$	100.0\%	F525H
F5-38	Al3 filtering time	0.00s ~ 10.00 s	0.10s	F526H
F5-39	Al curve selection	Bit: Al1 curve selection 1: curve 1 (2 points, see F5-24~F5-28) 2: curve 2 (2 points, see F5-29~F5-33) 3: curve 3 (2 points, see F5-34~F5-38) 4: curve 4 (4 points, see F5-41~F5-48) 5: curve 5 (4 points, see F5-49~F5-56) 10 bits: AI2 curve selection, same as above 100 bits: AI3 curve selection, same as above	321	F527H
F5-40	Al is lower than the minimum input setting selection	Bit: Al1 lower than minimum input setting selection 0 : corresponding minimum input setting 1:0.0\% 10 bits: AI2 is lower than the minimum input setting selection, same as above 100 bits: Al3 is lower than the minimum input setting selection, same as above	0	F528H
F5-41	Al curve 4 minimum input	-10.00V \sim F5-43	0.00 V	F529H
F5-42	Al curve 4 minimum input corresponding settings	-100.0\% $\sim+100.0 \%$	0.0\%	F52AH
F5-43	Al curve 4 inflection point 1 input	F5-41~F5-45	3.00 V	F52BH
F5-44	Al curve 4 inflection point 1 input corresponding settings	-100.0\% $\sim+100.0 \%$	30.0\%	F52CH
F5-45	Al curve 4 inflection point 2 input	F5-43~F5-47	6.00 V	F52DH
F5-46	Al curve 4 inflection point 2 input corresponding settings	-100.0\% $\sim+100.0 \%$	60.0\%	F52EH
F5-47	Al curve 4 maximum input	F5-45~+10.00V	10.00V	F52FH
F5-48	Al curve 4 maximum input corresponding setting	-100.0\% $\sim+100.0 \%$	100.0\%	F530H
F5-49	Al curve 5 minimum input	-10.00V \sim F5-51	-10.00V	F531H
F5-50	Al curve 5 minimum input corresponding settings	-100.0\% $\sim+100.0 \%$	-100.0\%	F532H
F5-51	Al curve 5 inflection point 1 input	F5-49~F5-53	-3.00V	F533H
F5-52	Al curve 5 inflection point 1 input corresponding settings	-100.0\% $\sim+100.0 \%$	-30.0\%	F534H
F5-53	Al curve 5 inflection point 2 input	F5-51~F5-55	3.00 V	F535H
F5-54	Al curve 5 inflection point 2 input corresponding settings	-100.0\% ~+100.0\%	30.0\%	F536H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F5-55	Al curve 5 maximum input	F5-53~+10.00V	10.00 V	F537H
F5-56	Al curve 5 maximum input corresponding setting	-100.0\% $\sim+100.0 \%$	100.0\%	F538H
F5-65	Al1 sets jumping point	-100.0\% ~ 100.0\%	0.0\%	F541H
F5-66	Al1 sets jump amplitude	0.0\% ~ 100.0\%	0.5\%	F542H
F5-67	Al2 sets jumping point	-100.0\% ~ 100.0\%	0.0\%	F543H
F5-68	Al2 sets jump amplitude	0.0\% ~ 100.0\%	0.5\%	F544H
F5-69	Al3 sets jumping point	-100.0\% $\sim 100.0 \%$	0.0\%	F545H
F5-70	Al3 sets jump amplitude	0.0\% ~ 100.0\%	0.5\%	F546H
F5-71	Reserved	Reserved	--	--
F5-72	Reserved	Reserved	--	--
F6 group start-stop control				
F6-00	Starting mode	0: direct startup 1: speed tracking restart 2: pre-excitation start - up	0	F600H
F6-01	Speed tracking mode	0: starting from shutdown frequency 1: starting from zero speed 2: starting from the maximum frequency	0	F601H
F6-02	Speed tracking speed	1~100	20	F602H
F6-03	Starting frequency	$0.00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}$	0.00 Hz	F603H
F6-04	Start frequency hold time	0.0s $\sim 100.0 \mathrm{~s}$	0.0s	F604H
F6-05	Start DC brake current / pre-excitation current	0\% ~ 100\%	0\%	F605H
F6-06	Dc brake start time / pre excitation time	0.0s~100.0s0.	Os	F606H
F6-07	Stop DC brake starting frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00Hz	F607H
F6-08	Waiting time for shutdown, DC braking, etc	0.0s $\sim 100.0 \mathrm{~s}$	0.0s	F608H
F6-09	Stop DC brake current	0\% - 100\%	0\%	F609H
F6-10	Stop DC braking time	0.0s $\sim 100.0 \mathrm{~s}$	0.0s	F60AH
F6-11	Brake usage rate	0\% $\sim 100 \%$	100\%	F60BH
F6-13	JOG frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency	2.00 Hz	F60DH
F6-14	JOG acceleration time	0.0s $\sim 6500.0 \mathrm{~s}$	20.0s	F60EH
F6-15	JOG deceleration time	0.0s $\sim 6500.0 \mathrm{~s}$	20.0s	F60FH
F6-16	Terminal JOG takes precedence	0 : invalid 1: valid	0	F480H
F6-17	Acceleration time 2	0.0s~6500.0s	\qquad	F611H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F6-18	Deceleration time 2	0s~6500.0s	Modeldetermina tion位	F612H
F6-19	Acceleration time 3	0s~6500.0s	Modeldetermina tionHel	F613H
F6-20	Deceleration time 3	0s~6500.0s		F614H
F6-21	Acceleration time 4	0s~6500.0s	Model determina tion	F615H
F6-22	Deceleration time 4		Model determina tion	F616H
F6-23	Acceleration and deceleration mode	0: linear acceleration and deceleration 1: S curve acceleration and deceleration	0	F617H
F6-24	Proportion of time at start of S curve	0.0\% ~ (100.0\%-F6-25)	30.0\%	F618H
F6-25	Proportion of time at end of S curve	0.0\% ~ (100.0\%-F6-24)	30.0\%	F619H
F6-26	Acceleration time 1 and acceleration time 2 switching frequency point	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00Hz	F61AH
F6-27	Deceleration time 1 and deceleration time 2 switching frequency point	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00Hz	F61BH
F7 group torque control parameters				
F7-00	Speed / torque control mode selection	0: Speed control 1: torque control	0	F700H
F7-01	Torque setting and source selection under torque control mode	```0 : number setting 1 (F7-03) 1: Al1 2: A12 3: Al3 4: PULSE pulse 5: communication given 6: MIN (AI1,AI2) 7: MAX (AI1,AI2) (full scale of option 1-7, corresponding to F7- 03 digital setting)```	0	F701H
F7-02	Small torque stop compensation	-50.0\% ~ 50.0\%	0.0\%	F702H
F7-03	Torque number word setting in torque control mode	-200.0\% ~ 200.0\%	150.0\%	F703H
F7-04	Torque control speed limit source	$\begin{aligned} & \text { 0: set by F7 - } 05 \text { and F7 - } 06 \\ & \text { 1: set by F0 - } 03 \text { frequency source. } \end{aligned}$	0	F704H
F7-05	Torque control forward speed limit	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F705H
F7-06	Torque control reverse speed limit	$0.00 \mathrm{~Hz} \sim$ maximum frequency	50.00 Hz	F706H
F7-07	Torque rise filtering time	0.00s $\sim 650.00 \mathrm{~s}$	0.00s	F707H
F7-08	Torque drop filtering time	0.00s $\sim 650.00 \mathrm{~s}$	0.00s	F708H
F7-09	Torque control frequency rise time	0.00s~6500.0s	20.0s	F709H
F7-10	Torque control frequency drop time	0.00s~6500.0s	20.0s	F70AH
F7-11	Coefficient of friction compensation	0.0~100.0\%	0.0\%	F70BH
F7-10	Friction compensation time	0.00s~100.0s	3.0s	F70CH

Function code	Name	Setting range	Factory value	Communica tion address
F8 group auxiliary function				
F8-00	Set the cumulative power-up time	Oh~65000h	Oh	F800H
F8-01	Set the cumulative run time	Oh~65000h	Oh	F801H
F8-04	Timing function selection	0 : invalid 1: valid	0	F804H
F8-05	Timing run time selection	0: F8-06 settings 1: Al1 2: Al2 3: Al3 analog input range corresponds to F8-06	0	F805H
F8-06	Timing run time	$0.0 \mathrm{Min} \sim 6500.0 \mathrm{Min}$	0.0Min	F806H
F8-07	This run is set at the arrival time	$0.0 \sim 6500.0$ minutes	0.0Min	F807H
F8-08	Hopping frequency 1	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00 Hz	F808H
F8-09	Hopping frequency 2	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00 Hz	F 809 H
F8-10	Hopping frequency 3	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00 Hz	F80AH
F8-11	Hopping frequency 4	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.00 Hz	F80BH
F8-12	Amplitude of hopping frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency	0.01Hz	F80CH
F8-13	Whether the jump frequency valid during acceleration and deceleration	0 : invalid 1: valid	0	F80DH
F8-14	Wakeup frequency	(F8-16) -the maximum frequency (F0-16)	0.00 Hz	F80EH
F8-15	Wake - up and delay time	0.0s $\sim 6500.0 \mathrm{~s}$	0.0s	F80FH
F8-16	Sleep frequency	$0.00 \mathrm{~Hz} \sim$ wakeup frequency (F8-14)	0.00 Hz	F 810 H
F8-17	Sleep delay time	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	0.0s	F811H
F8-18	Output power correction factor	0.00\% - 200.0\%	100.0\%	F812H
F8-19	Selection of instantaneous outage action	0 : invalid 1: deceleration 2: slow down and shut down	0	F813H
F8-20	Momentary stop action suspends judgment of cutoff voltage	80.0\% ~ 100.0\%	90.0\%	F814H
F8-21	Judging time of instantaneous power failure voltage rising	0.00s~100.00s	0.50s	F815H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
F8-22	Instantaneous power failure action judges OFF voltage	60.0 \% ~ 100.0 \% (standard bus voltage)	80.0\%	F816H
F8-23	Pendulum frequency setting mode	0 : relative to center frequency 1: relative to maximum frequency	0	F817H
F8-24	Swing amplitude	0.0\% ~ 100.0\%	0.0\%	F818H
F8-25	Amplitude of sudden jump frequency	0.0\% ~ 50.0\%	0.0\%	F819H
F8-26	Frequency swing period	0.1s $\sim 3000.0 \mathrm{~s}$	10.0s	F81AH
F8-27	Rise time of triangular wave of pendulum frequency	0.1\% ~ 100.0\%	50.0\%	F81BH
F8-28	Set length	Om~65535m	1000m	F81CH
F8-29	Actual length	0m~65535m	Om	F81DH
F8-30	Number of pulses per meter	$0.1 \sim 6553.5$	100.0	F81EH
F8-31	Set the count value	1~65535	1000	F81FH
F8-32	Specify count value	1~65535	1000	F820H
F9 group failure and protection				
F9-00	Motor overload protection selection	0: prohibited 1: allowed	1	F900H
F9-01	Motor overload protection gain	0.20~10.00	1.00	F901H
F9-02	Motor overload early warning coefficient	50\% ~ 100\%	80\%	F902H
F9-03	Over voltage stall gain	0~100	0	F903H
F9-04	Over voltage stall protection voltage	120\% ~ 150\%	130\%	F904H
F9-05	Over - loss rate gain	0~100	20	F905H
F9-06	Over current protection current	100\% ~ 200\%	150\%	F906H
F9-07	Selection of short circuit protection between power-on and ground	0 : invalid 1: valid	1	F907H
F9-08	Does the under voltage fault reset automatically	0: auto reset 1: not automatically reset	0	F908H
F9-09	Number of automatic fault resets	0~20	0	F909H
F9-10	Fault DO action selection during automatic fault reset period	0 : no action 1: action	0	F90AH
F9-11	Time between automatic fault reset	0.1s~100.0s	1.0s	F90BH
F9-12	Input phase missing \} contactor suction protection selection	Bit: input phase loss protection selection 10 bits: contactor pull-in protection selection 0 : prohibited 1: allowed	11	F90CH
F9-13	Output phase - missing protection selection	0: prohibited 1: allowed	1	F90DH

| $\begin{array}{l}\text { Function } \\ \text { code }\end{array}$ | Name | \quad Setting range |
| :--- | :--- | :--- | :--- | :--- |$)$

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address							
F9-26	Off - load protection option	0 : invalid 1: valid	0	F91AH							
F9-27	Load shedding test level	0.0~100.0\%	10.0\%	F91BH							
F9-28	Off loading test time	$0.0 \sim 60.0 \mathrm{~s}$	1.0s	F91CH							
F9-30	Over - speed detection value	$0.0 \% \sim 50.0$ \% (the maximum frequency)	20.0\%	F91EH							
F9-31	Over - speed test time	$\begin{aligned} & \text { 0.0s: not tested } \\ & 0.1 \sim 60.0 \mathrm{~s} \end{aligned}$	1.0s	F91FH							
F9-32	Excessive speed deviation test value	$0.0 \% \sim 50.0$ \% (the maximum frequency)	20.0\%	F920H							
F9-33	Excessive speed deviation inspection time	$\begin{aligned} & \text { 0.0s: not tested } \\ & 0.1 \sim 60.0 \mathrm{~s} \end{aligned}$	5.0s	F921H							
FA group PID function											
FA-00	PID given source	0: FA - 01 settings 1: AI1 2: AI2 3: AI3 4: PULSE pulse setting (X5) 5: communication given 6: multi-segment instruction given	0	FAOOH							
FA-01	PID value given	0.0\%-100.0\%	50.0\%	FA01H							
FA-02	PID feedback source	```0: Al1 1: Al2 2: Al3 3: Al1-AI2 4: PULSE pulse setting (X5) 5: communication given 6: Al1+AI2 7: MAX (\|AI1	,	AI2) 8: MIN (AI1	,	AI2)```	0	FA02H
FA-03	PID direction of action	0 : positive effect 1: reaction	0	FA03H							
FA-04	PID given feedback range	10~65535	1000	FA04H							
FA-05	Proportional gain Kp	$0.0 \sim 100.0$	20.0	FA05H							
FA-06	Integration time Ti	0.01s $\sim 10.00 \mathrm{~s}$	2.00 s	FA06H							
FA-07	Differential time Td	0.000s $\sim 10.000 \mathrm{~s}$	0.000s	FA07H							
FA-08	PID inversion cutoff frequency	0.00 ~ maximum frequency	0.00Hz	FA08H							
FA-09	PID deviation limit	0.0\% $\sim 100.0 \%$	0.0\%	FA09H							
FA-10	PID differential limiting	0.00\% ~ 100.00\%	0.10\%	FAOAH							
FA-11	PID given change time	0.00~650.00s	0.00s	FAOBH							
FA-12	PID feedback filtering time	0.00~60.00s	0.00s	FAOCH							
FA-13	PID output filtering time	0.00~60.00s	0.00s	FAODH							
FA-15	Proportional gain Kp		20.0	FAOFH							

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
FA-16	Integration time Ti	0.01s $\sim 10.00 \mathrm{~s}$	2.00s	FA10H
FA-17	Differential time Td	0.000s $\sim 10.000 \mathrm{~s}$	0.000s	FA11H
FA-18	PID parameter switching condition	0 : do not switch 1: switch through X terminal 2: switch automatically according to deviation 3: automatically switch according to operating frequency	0	FA12H
FA-19	Deviation of PID parameter switching	0.0\% ~FA-20	20.0\%	FA13H
FA-20	PID parameter switching offset 2	FA-19~100.0\%	80.0\%	FA14H
FA-21	Initial PID value	0.0\% $\sim 100.0 \%$	0.0\%	FA15H
FA-22	Initial PID value holding time	0.00~650.00s	0.00s	FA16H
FA-23	Positive maximum of two output deviations	0.00\% $\sim 100.00 \%$	1.00\%	FA17H
FA-24	Maximum reverse output deviation for two times	0.00\% ~ 100.00\%	1.00\%	FA18H
FA-25	PID integral attribute	Bit: integral separation 0 : invalid 1: valid 10 bits: stop integrating after output to limit value 0 : continue integrating 1: stop points	00	FA19H
FA-26	PID feedback missing test value	0.0% : loss of feedback without judgment 0.1\%-100.0\%	0.0\%	FA1AH
FA-27	PID feedback loss detection time	0.0s $\sim 20.0 \mathrm{~s}$	0.0s	FA1BH
FA-28	PID shutdown operation	0 : stop without calculation 1: calculation during shutdown	0	FA1CH
FA-29	Stress wake-up option	0 : do not wake up under pressure 1: wake up under pressure	0	FA1DH
FA-30	Percentage of wake-up pressure	50\% ~ 1000\%	80.0\%	FA1EH
FA-31	Pressure wake-up delay time	0.0~6000.0s	1.0	FA1FH
FA-32	Percentage of dormant pressure	0: 100.0\%	100.0\%	FA20H
FA-33	Pressure sleep delay time	0.0~6000.0s	60.0 S	FA21H

FB group second group motor parameters

FB-01	Rated power of asynchronous motor	$0.1 \mathrm{~kW} \sim 6553.5 \mathrm{~kW}$	Model determina tion	FB01H
FB-02	Rated voltage of motor	$1 \mathrm{~V} \sim 2000 \mathrm{~V}$	Model determina tion	FB02H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
FB-03	Rated current of motor	0.01A~655.35A (frequency inverter power \leq 55 kW) $0.1 \mathrm{~A} \sim 6553.5 \mathrm{~A}$ (frequency inverter work rate > 55kW)	Model determina tion	FB03H
FB-04	Rated frequency of motor	$0.01 \mathrm{~Hz} \sim$ maximum frequency		FB04H
FB-05	Rated speed of motor	$1 \mathrm{rpm} \sim 65535 \mathrm{rpm}$		FB05H
FB-06	Stator resistance of asynchronous motor	$0.001 ~ 65.535$ (frequency inverter power $\leq 55 \mathrm{~kW}$) 0.0001 ~ 6.5535 (frequency inverter power $>55 \mathrm{~kW}$)	Model determina tion	FB06H
FB-07	Rotor resistance of asynchronous motor	$0.001 \sim 65.535$ (frequency inverter power $\leq 55 \mathrm{~kW}$) 0.0001 ~ 6.5535 (frequency inverter power $>55 \mathrm{~kW}$)	Model determina tion	FB07H
FB-08	Induction motor leakage reactance	$0.01 \mathrm{mH} \sim 655.35 \mathrm{mH}$ (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.001 \mathrm{mH} \sim 65.535 \mathrm{mH}$ (frequency inverter power > 55 kW)	Model determina tion	FB08H
FB-09	Mutual inductance reactance of asynchronous motor	$0.1 \mathrm{mH} \sim 6553.5 \mathrm{mH}$ (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.01 \mathrm{mH} \sim 655.35 \mathrm{mH}$ (frequency inverter power > 55 kW)	Model determina tion	FB09H
FB-10	Asynchronous motor no-load current	$0.01 \mathrm{~A} \sim$ FB- 03 (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.1 \mathrm{~A} \sim \mathrm{FB}$ - 03 (frequency inverter power $>55 \mathrm{~kW}$)	Model determina tion	FB0AH
FB-29	Tuning selection	0 : no operation 1: asynchronous machine static tuning 2. asynchronous machine fully tuned	0	FB1DH
FB-38	Velocity loop proportional gain KP1	1~100	30	FB26H
FB-39	Speed loop integral gain KI1	0.01s $\sim 10.0 \mathrm{~s}$	0.50s	FB27H
FB-40	Switching frequency 1	$0.00 \sim$ FB-43	5.00 Hz	FB28H
FB-41	Velocity loop proportional gain KP2	1~100	20	FB29H
FB-42	Speed loop integral gain KI2	0.01s~10.00s	1.00s	FB2AH
FB-43	Switching frequency 2	FB-40~maximum frequency	10.00 Hz	FB2BH
FB-44	Vector controlled slip gain	50\% ~ 200\%	100\%	FB2CH
FB-45	SVC torque filter constant	00~31	0.000s	FB2DH

Function code	Name	Setting range	Factory value	Communica tion address
FB-47	Torque upper limit source under speed control mode	0 : FB - 48 settings 1: Al1 2: AI2 3: AI3 4: PULSE pulse 5: communication given 6: MIN (AI1,AI2) 7: MAX (Al1,Al2)1- Full scale of option 7, corresponding to FB -	0	FB2FH
FB-48	Numerical setting of upper limit of torque under speed control mode	0.0\% ~ 200.0\%	150.0\%	FB30H
FB-51	Excitation regulation proportional gain	0~60000	2000	FB33H
FB-52	Excitation regulation integral gain	0~60000	1300	FB34H
FB-53	Torque adjusting proportional gain	0~60000	2000	FB35H
FB-54	Torque adjusting integral gain	0~60000	1300	FB36H
FB-55	Integral property of velocity loop	Bit: integral separation 0 : invalid 1: valid	0	FB37H
FB-61	Second motor control mode	0: no PG open loop vector control 1 1: no PG open loop vector control 2 2: V/F control	0	FB3DH
FB-62	Selection between acceleration and deceleration of 2nd motor	0 : same as 1 st motor 1: acceleration and deceleration time 1 2: acceleration and deceleration time 2 3: acceleration and deceleration time 3 4: acceleration and deceleration time 4	0	FB3EH
FB-63	Second motor torque boost	0.0% : automatic torque increase $0.1 \% \sim 30.0 \%$	$\begin{gathered} \text { Model } \\ \text { determina } \end{gathered}$ tion	FB3FH
FB-65	Second motor oscillation suppression gain	0~100	$\begin{gathered} \text { Model } \\ \text { determina } \\ \text { tion } \end{gathered}$	FB41H
FC group multi-segment instruction, simple PLC				
FC-00	Multi - segment instruction 0	-100.0\% ~ 100.0\%	0.0\%	FCOOH
FC-01	Multi - segment instruction 1	-100.0\% ~ 100.0\%	0.0\%	FC01H
FC-02	Multi - segment instruction 2	-100.0\% ~ 100.0\%	0.0\%	FC02H
FC-03	Multi - segment instruction 3	-100.0\% ~ 100.0\%	0.0\%	FC03H
FC-04	Multi - segment instruction 4	-100.0\% ~ 100.0\%	0.0\%	FC04H
FC-05	Multi - segment instruction 5	-100.0\% ~ 100.0\%	0.0\%	FC05H
FC-06	Multi - segment instruction 6	-100.0\% ~ 100.0\%	0.0\%	FC06H
FC-07	Multi - segment instruction 7	-100.0\% ~ 100.0\%	0.0\%	FC07H

Chapter IV Functional parameters

$\begin{array}{c}\text { Function } \\ \text { code }\end{array}$	Name	Setting range	$\begin{array}{c}\text { Factory } \\ \text { value }\end{array}$	$\begin{array}{l}\text { Communica } \\ \text { tion address }\end{array}$
FC-08	$\begin{array}{l}\text { Multi - segment } \\ \text { instruction 8 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC08H
FC-09	$\begin{array}{l}\text { Multi - segment } \\ \text { instruction 9 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC09H
FC-10	$\begin{array}{l}\text { Multi - segment } \\ \text { instruction 10 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC0AH
FC-11	$\begin{array}{l}\text { Multi - segment } \\ \text { instruction 11 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC0BH
FC-12	$\begin{array}{l}\text { Multi - segment } \\ \text { instruction 12 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC0CH
FC-13	$\begin{array}{l}\text { Musti }- \text { segment } \\ \text { instruction 13 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC0DH
FC-14	$\begin{array}{l}\text { Multi - segment } \\ \text { instruction 14 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC0EH
FC-15	$\begin{array}{l}\text { Multi i segment } \\ \text { instruction 15 }\end{array}$	$-100.0 \% \sim 100.0 \%$	0.0%	FC0FH
FC-16	$\begin{array}{l}\text { Simple PLC operation } \\ \text { mode }\end{array}$	$\begin{array}{l}0: \text { stop after single operation } \\ 1: \text { maintain final value at end of single run } \\ 2: \text { keep circulating }\end{array}$	0	FC10H
FC-17	$\begin{array}{l}\text { Simple PLC power failure } \\ \text { memory option }\end{array}$	$\begin{array}{l}\text { Bit: power failure memory option } \\ 0: \text { no memory when power fails } \\ 1: m e m o r y ~ w h e n ~ p o w e r ~ f a i l s ~\end{array}$		
10 bits: stop memory option				
0 for shutdown memory				

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
FC-30	Simple PLC section 6 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC1EH
FC-31	Selection of acceleration and deceleration time for simple PLC section 6	0~3	0	FC1FH
FC-32	Simple PLC section 7 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC2OH
FC-33	Selection of acceleration and deceleration time for simple PLC section 7	0~3	0	FC21H
FC-34	Simple PLC section 8 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC22H
FC-35	Selection of acceleration and deceleration time for simple PLC section 8	0~3	0	FC23H
FC-36	Simple PLC section 9 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC24H
FC-37	Selection of acceleration and deceleration time for simple PLC section 9	0~3	0	FC25H
FC-38	Simple PLC section 10 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC26H
FC-39	Selection of acceleration and deceleration time for simple PLC section 10	0~3	0	FC27H
FC-40	Simple PLC section 11 shipping time	0.0s(h) $\sim 6500.0 \mathrm{~s}$ (h)	0.0s(h)	FC28H
FC-41	Selection of acceleration and deceleration time for simple PLC section 11	0~3	0	FC29H
FC-42	Simple PLC section 12 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC2AH
FC-43	Selection of acceleration and deceleration time for simple PLC section 12	0~3	0	FC2BH
FC-44	Simple PLC section 13 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC2CH
FC-45	Selection of acceleration and deceleration time for simple PLC section 13	0~3	0	FC2DH
FC-46	Simple PLC section 14 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC2EH
FC-47	Selection of acceleration and deceleration time for simple PLC section 14	0~3	0	FC2FH
FC-48	Simple PLC section 15 shipping time	0.0s(h)~6500.0s(h)	0.0s(h)	FC30H
FC-49	Selection of acceleration and deceleration time for simple PLC section 15	0~3	0	FC31H
FC-50	Simple PLC runtime unit	$\begin{aligned} & \text { 0: S (seconds) } \\ & \text { 1: h (hours) } \end{aligned}$	0	FC32H

Function code	Name	Setting range	Factory value	Communica tion address
FC-51	Given mode of multi-segment instruction 0	```0 : given function code FC - 00 1: Al1 2: Al2 3: Al3 4: PULSE pulse 5: PID 6: preset frequency (F0 -09) given, UP / DOWN can be modified```	0	FC33H
FD group communication parameters				
FD-00	Communication protocol selection	0: MODBUS protocol	0	FDOOH
FD-01	Communication baud rate	Bit: MODBUS 0: 300 bps 1: 600BPS 2: 1200BPS 3: 2400BPS 4: 4800BPS 5: 9600BPS 6: 19200BPS 7: 38400BPS 8: 57600BPS 9: 115200BPS	0005	FD01H
FD-02	MODBUS data format	0: no check (8 - $\mathrm{N}-2$) 1: even check (8-E-1) 2: odd check (8-O-1) 3: no check (8-N-1)	0	FD02H
FD-03	Local address	$\begin{aligned} & \text { 0: broadcast address } \\ & 1 \sim 247 \end{aligned}$	1	FD03H
FD-04	MODBUS response delay	0~20ms	2	FD04H
FD-05	Communication timeout	0.0: invalid $0.1 \sim 60.0 \mathrm{~s}$	0.0	FD05H
FD-06	MODBUS communication data format	Bit: MODBUS 0: non-standard MODBUS protocol 1: standard MODBUS protocol	31	FD06H
FD-07	Discrimination rate of communication read current	$\begin{aligned} & 0: 0.01 \mathrm{~A} \\ & 1: 0.1 \mathrm{~A} \end{aligned}$	0	FD07H
FD-08	Communication setting frequency selection	0 : percentage of maximum frequency 1: set frequency directly	0	FD08H
FD-09	Return data selection	0 : send back frame after receiving data 1: do not send back frames after receiving data	0	FD09H
FE group user customized function code				
FE-00	User function code 0	$\begin{aligned} & \mathrm{FO} 0-00 \sim \mathrm{FH}-\mathrm{xx} \\ & \mathrm{PO} 0-00 \sim \mathrm{Px}-\mathrm{xx} \\ & \mathrm{UO}-\mathrm{xx} \sim \mathrm{U} 0-\mathrm{xx} \end{aligned}$	F0-00	FEOOH
FE-01	User function code 1		F0-00	FE01H
FE-02	User function code 2		F0-00	FE02H
FE-03	User function code 3		F0-00	FE03H
FE-04	User function code 4		F0-00	FE04H
FE-05	User function code 5		F0-00	FE05H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
FE-06	User function code 6		F0-00	FE06H
FE-07	User function code 7		F0-00	FE07H
FE-08	User function code 8		F0-00	FE08H
FE-09	User function code 9		F0-00	FE09H
FE-10	User function code 10		F0-00	FEOAH
FE-11	User function code 11		F0-00	FEOBH
FE-12	User function code 12		F0-00	FEOCH
FE-13	User function code 13		F0-00	FEODH
FE-14	User function code 14		F0-00	FEOEH
FE-15	User function code 15		F0-00	FEOFH
FE-16	User function code 16		F0-00	FE10H
FE-17	User function code 17		F0-00	FE11H
FE-18	User function code 18		F0-00	FE12H
FE-19	User function code 19		F0-00	FE13H
FE-20	User function code 20		F0-00	FE14H
FE-21	User function code 21		F0-00	FE15H
FE-22	User function code 22		F0-00	FE16H
FE-23	User function code 23		F0-00	FE17H
FE-24	User function code 24		F0-00	FE18H
FE-25	User function code 25		F0-00	FE19H
FE-26	User function code 26		F0-00	FE1AH
FE-27	User function code 27		F0-00	FE1BH
FE-28	User function code 28		F0-00	FE1CH
FE-29	User function code 29		F0-00	FE1DH

FF group performance optimization parameters

FF-04	Fast current limiting enable	$0:$ not enabled $1:$ enable	1	FF04H
FF-06	Under voltage point setting	$60.0 \% \sim 140.0 \%$	100.0%	FF06H
FF-09	Over voltage point setting	$200.0 \mathrm{~V} \sim 2200.0 \mathrm{~V}$	Model determina tion	FF09H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
FF-10	Over current suppression starting current	50\% ~ 200.0%	150\%	FFOAH
FF-11	Over current suppression enable	0 : not suppressed 1: inhibition enable	1	FFOBH
FF-12	Post stall suppression gain	0~100	20	FFOCH
FF-13	Over current suppression current compensation coefficient	50\% ~ 200.0\%	50\%	FFODH
FF-14	Over voltage suppression starting voltage	650.0V ~800.0V	760V	FFOEH
FF-15	Over voltage suppression enable	0 : not suppressed 1: inhibition enable	1	FFOFH
FF-16	Over voltage suppression frequency gain	0~100	30	FF10H
FF-17	Over voltage suppression voltage gain	0~100	30	FF11H
FF-18	Over voltage suppression maximum rise limit frequency	$0 \sim 50 \mathrm{~Hz}$	5 Hz	FF12H
FF-19	Slip compensation coefficient	0.1~10.0	0.5	FF13H
FF-20	Automatic frequency up enable	0 : not enabled 1: enable	0	FF14H
FF-21	Minimum electric torque current	10~100	50	FF15H
FF-22	Maximum generating torque current	10~100	20	FF16H
FF-23	Automatic frequency increase KP	0~100	50	FF17H
FF-24	Automatic frequency increase KI	$0 \sim 100$	50	FF18H
FF-26	Rotational speed tracking proportional gain KP	0~1000	500	FF1AH
FF-27	Rotational speed tracking integral gain KI	0~1000	800	FF1BH
FF-28	Rotational speed tracking target current	30~200	100	FF1CH
FF-29	Lower limit of rotational speed tracking current	10~100	30	FF1DH
FF-30	Rotational speed tracking voltage rise time	0.5~30s	1.1s	FF1EH
FF-31	Demagnetization time	0.00~5.00s	1.00s	FF1FH
FF-32	Starting voltage of brake unit	650~800	690 V	FF20H
FF-33	Instantaneous stop gain	0~100	40	FF21H
FF-34	Instant stop gain	$0 \sim 100$	30	FF22H
FF-35	Deceleration time for momentary stop	0.0~300.0s	5.0	FF23H
FF-36	Instant stop function selection	0 : invalid 1: slow down but do not stop 2: slow down to stop	0	FF24H
FF-37	Instantaneous stop recovery judgment voltage	80: 100\%	85\%	FF25H
FF-38	Judging time for instantaneous stop and non-stop voltage recovery	0.0~100.0s	0.5s	FF26H
FF-39	Judging time for instantaneous stop and non-stop movement	60\% ~ 100\%	80\%	FF27H

Function code	Name	Setting range	Factory value	Communica tion address
E0 group fault record group				
E0-00	First failure type	0 : no fault 1: reservations 2: accelerating over current 3: slow down over current 4: constant speed over current 5. accelerating Over voltage 6: deceleration Over voltage 7: constant speed Over voltage 8: buffer resistance overload 9: under voltage 10: frequency inverter overload 11: motor overload 12: enter missing phase 13: output phase missing 14: module overheating 15: external failure 16: abnormal communication 17: contactor abnormal 18: abnormal current detection 19: abnormal motor tuning 20: encoder /PG card exception 21: abnormal reading and writing of parameters 22: abnormal frequency inverter hardware 23: motor short circuit to ground 24: reservations 25: reservations 26: the running time has arrived 27: User - defined fault 1 28: User - defined fault 2 29: Time to power on 30: OFF load 31: loss of PID feedback at runtime 40: fast current limit timeout 41: switch the motor during operation 42: Speed deviation is too large 43: motor over speed 45: motor over temperature 51: incorrect initial position	-	AFOOH
E0-01	Second failure type		-	AF01H
E0-02	Third (most recent) failure type		-	AF02H
E0-03	Frequency of third (most recent) failure		-	AF03H
E0-04	Current at the third (most recent) fault		-	AF04H
E0-05	Bus voltage at the third (most recent) fault	-	-	AF05H
E0-06	Enter the terminal status for the third (most recent) failure	-	-	AF06H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
E0-07	Output terminal status at third (most recent) failure	-	-	AF07H
E0-08	frequency inverter status at the third (most recent) failure	-	-	AF08H
E0-09	Power on time for the third (most recent) failure	-	-	AF09H
E0-10	Run time at the third (most recent) failure	-	-	AFOAH
E0-13	Frequency at second failure	-	-	AFODH
E0-14	Current at second failure	-	-	AFOEH
E0-15	Bus voltage at second failure	-	-	AFOFH
E0-16	Enter the terminal status during the second failure		-	AF10H
E0-17	Output terminal status at second failure		-	AF11H
E0-18	frequency inverter status at second failure	-	-	AF12H
E0-19	Power on time for second failure		-	AF13H
E0-20	Run time at second failure	-	-	AF14H
E0-23	Frequency at first failure	-	-	AF17H
E0-24	Current at first failure	-	-	AF18H
E0-25	Bus voltage at first failure	-	-	AF19H
E0-26	Enter the terminal status when the fault occurs for the first time.	-	-	AF1AH
E0-27	Output terminal status at first failure	-	-	AF1BH
E0-28	frequency inverter status at first failure		-	AF1CH
E0-29	Power on time for first failure		-	AF1DH
E0-30	Run time at first failure	-	-	AF1EH
P2 group AIA correction group				
P2-00	Al1 measured voltage 1	-10.00V $\sim 10.00 \mathrm{~V}$	Factory correction	A200H
P2-01	Al1 displayed voltage 1	-10.00V $\sim 10.00 \mathrm{~V}$	Factory correction	A201H

Chapter IV Functional parameters

Function code	Name	Setting range	Factory value	Communica tion address
P2-02	Al1 measured voltage 2	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A202H
P2-03	Al1 displayed voltage 2	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A203H
P2-04	Al2 measured voltage 1	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A204H
P2-05	Al2 displayed voltage 1	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A205H
P2-06	Al2 measured voltage 2	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A206H
P2-07	Al2 displayed voltage 2	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A207H
P2-08	Al3 measured voltage 1	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A208H
P2-09	Al3 displayed voltage 1	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A209H
P2-10	Al3 measured voltage 2	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A20AH
P2-11	Al3 displayed voltage 2	$-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory correction	A20BH

4.2 Summary table of monitoring parameters

Function code	Name	Minimum unit	Communication address
U0 group basic monitoring parameters			
U0-00	Operating frequency (Hz)	0.01 Hz	7000H
U0-01	Set frequency (Hz)	0.01 Hz	7001H
U0-02	Busbar voltage (V)	0.1 V	7002 H
U0-03	Output voltage (V)	1V	7003H
U0-04	Output current (A)	0.01 A	7004H
U0-05	Output power (kW)	0.1 kW	7005H
U0-06	Output torque (\%)	0.1\%	7006H
U0-07	X terminal input status	1	7007H
U0-08	Do output state	1	7008H
U0-09	Al1 voltage (V)	0.01 V	7009H
U0-10	$\begin{aligned} & \text { Al2 voltage (V) / current } \\ & (\mathrm{mA}) \end{aligned}$	$0.01 \mathrm{~V} / 0.01 \mathrm{~mA}$	700AH
U0-11	Al3 voltage (V)	0.01 V	700BH
U0-12	count value	1	700 CH
U0-13	Length value	1	700DH
U0-14	Load speed display	1	700EH
U0-15	PID setting	1	700FH
U0-16	PID feedback	1	7010 H
U0-17	PLC stage	1	7011H
U0-18	PULSE input pulse frequency (Hz)	0.01 kHz	7012H
U0-19	Feedback speed (Hz)	0.01 Hz	7013H
U0-20	Remaining operating time	0.1 Min	7014H
U0-21	Al1 pre-correction voltage	0.001 V	7015H
U0-22	Al2 voltage before correction (V) / current (mA)	$0.001 \mathrm{~V} / 0.01 \mathrm{~mA}$	7016H
U0-23	Al3 voltage before correction	0.001V	7017H
U0-24	Linear velocity	$1 \mathrm{~m} / \mathrm{Min}$	7018H
U0-25	Current power-on time	1Min	7019H
U0-26	Current run time	0.1 Min	701AH
U0-27	PULSE input pulse frequency	1 Hz	701BH
U0-28	communication set value	0.01\%	701 CH

Chapter IV Functional parameters

Function code	Name	Minimum unit	Communication address
U0-30	Main frequency X display	0.01 Hz	701EH
U0-31	Secondary frequency Y display	0.01 Hz	701FH
U0-32	View any memory address values	1	7020H
U0-34	Motor temperature value	$1^{\circ} \mathrm{C}$	7022H
U0-35	Target torque (\%)	0.1\%	7023H
U0-37	Power factor angle	0.1°	7025H
U0-39	VF separates target voltage	1 V	7027H
U0-40	VF separates output voltage	1V	7028H
U0-41	X input status visual display		7029H
U0-42	DO input status visual display	1	702AH
U0-45	Fault message	1	702DH
U0-59	Set frequency (\%)	0.01\%	703BH
U0-60	Operating frequency (\%)	0.01\%	703 CH
U0-61	frequency inverter status	1	703DH
U0-62	Current fault code	1	703EH
U0-65	Upper torque limit	0.1\%	7041H
U0-69	frequency inverter module radiator temperature	$0^{\circ} \mathrm{C} \sim 120^{\circ} \mathrm{C}$	7045H
U0-70	Accumulated operating time	0h~65535h	7046H
U0-71	Cumulative power-on time	$0 \sim 65535$ hours	7047H
U0-72	Cumulative power consumption	$0 \sim 65535$ degrees	7048H
U0-73	Product Number	-	7049H
U0-74	Software version number	-	704AH
U0-76	Rated power of frequency converter	0.1KW	704CH
U0-77	frequency inverter G/P type machine	1	704DH
U0-78	Rated voltage of frequency inverter	1V	704EH

Chapter V Description of parameters

In this chapter:

FX-XX	YYYYYY	$\mathrm{N} 1 \sim \mathrm{~N} 2$	[D]
(function cod)	(function code name)	(function code range)	(default)

F0 Group basic function group

F0 - 00 menu display selection	$0 \sim 11[11]$

00: only f group parameters are displayed.
01: display f group and u group parameters.
11: display parameters of group f, group p, and group u.

F0 - 01 motor control mode selection	$0 \sim 2$ [2]

0: no PG open loop vector control 1
Refers to open-loop vector control, which is suitable for common high-performance control occasions. And a frequency inverter can only drive one electric machine. Such as machine tools, centrifuges, wire drawing machines, injection molding machines, etc.

1: no PG open loop vector control 2

2: V/F control
It is suitable for occasions where the load requirement is not high, or one frequency inverter drives multiple motors, such as negative load of fans and pumps. For occasions where one frequency inverter drags multiple motors Tips:

The motor parameter identification process must be carried out when selecting the vector control mode. Only accurate motor parameters can give rise to the advantages of vector control. Better performance can be obtained by adjusting the speed regulator parameter F2 group of function codes.
F0-02 Command given way $\quad 0 \sim 2$ [0]

0: operation panel command channel ("LOCAL/REMOT" light goes out);
The run command is controlled by the RUN, STOP/RES keys on the operation panel.
1: terminal command channel ("LOCAL/REMOT" light on);
The multifunctional input terminals FWD, REV, JOGF, JOGR, etc. control the operation command.
2: the communication command channel ("LOCAL/REMOT" light flashes)
Operation command is given by the upper computer through communication.

Write the control command through address 0×2000. See appendix A for the definition of the control command.

```
F0 - 03 Main frequency source }X\mathrm{ selection 
```

0 : Digital setting (no memory when power fails)
The initial value of the set frequency is F0-09 " preset frequency". The setting frequency value of the frequency inverter can be changed through the knob of the keyboard (or up and down of the multi-function input terminal).

When the frequency inverter is powered down and powered on again, the set frequency value returns to F0-09 " digital set preset frequency" value.

1: digital setting (power failure memory)
The initial value of the set frequency is F0-09 " preset frequency". The setting frequency value of the frequency inverter can be changed through the knob of the keyboard (or up and down of the multi-function input terminal).When the frequency inverter is powered down and powered up again, the set frequency is the set frequency at the time of the last power down, and is memorized through the knob or the correction amount of terminals up and down.

It should be noted that F0 - 26 is "digital set frequency stop memory selection" and F0-26 is used to select whether the frequency correction is memorized or cleared when the frequency inverter is stopped. F0-26 is related to shutdown, not to power-down memory. Attention should be paid in application.

2: Al1
3: Al2
4: Al3
Where:
Al1 is a $0 v-10 \mathrm{v}$ voltage type input
AI2 can be a $0 \mathrm{v}-10 \mathrm{v}$ voltage input or a $4 \mathrm{ma}-20 \mathrm{ma}$ current input. The j 8 jumper on the control panel selects
Al3 can be a $0 \mathrm{v}-10 \mathrm{v}$ voltage input
The input voltage values of $\mathrm{Al} 1, \mathrm{Al} 2$, and Al 3 correspond to the target frequency and can be freely selected by the user.

HV480 provides 5 groups of correspondence curves, and F5 group function codes are set.
Al is given as frequency, and the voltage / current input corresponds to 100.0% set, which is the percentage ratio of FO - 16 relative to the maximum frequency.
5. Pulse given (X5)

Frequency is given through terminal X 5 high speed pulse.
Pulse given signal specification: voltage range $9 \mathrm{~V} \sim 30 \mathrm{~V}$, frequency range $0 \mathrm{kHz} \sim 100 \mathrm{kHz}$. Pulse given can only be input from the multifunctionality input terminal X5.

The relationship between the X 5 terminal input pulse frequency and the corresponding setting is set through F5-13~F5-17. The corresponding relationship is a linear correspondence of 2 bits. The 100.0% set corresponding to the pulse input refers to the percentage of the relative maximum frequency FO-16.
6. When selecting a multi-segment instruction

Operation mode for a multi-segment instruction, different combinations of States of the Xi terminal need to be input through a digital quantity. The corresponding the different set frequency value. HV480 can be provided with 4 multi-segment command terminals (terminal functions 12-15). The 16 States of 4 terminals can correspond to any 16 " multi-segment commands" through FC group function codes. The "multi-segment commands" are the percentage of the relative maximum frequency FO-16.

When digital quantity input X terminal is used as multi-segment command terminal function, corresponding settings need to be made in F5 group. Please refer to F5 group related function parameter description for details.

7. When the simple PLC

Frequency source is a simple PLC, the operation frequency source of the frequency converter can be switched between 1 to 16 arbitrary frequency commands. The holding time of $1 \sim 16$ frequency commands and the respective acceleration and deceleration time can also be set by the user. For details, please refer to FC group's relevant instructions.
8. PID

The output of process PID control is selected as the operating frequency. It is generally used in field closed-loop control of process, such as constant pressure closed-loop control and constant tension closed-loop control.
When applying PID as the frequency source, the relevant parameters of FA group "PID function" need to be set.
9. Communication given

Refers to the frequency given by the communication method
The upper computer gives the data through the communication address 0×1000. The data format is $-100.00 \% \sim 100.00 \%$, and 100.00% refers to the percentage of the maximum frequency F0-16.

F0 - 04 reverse control prohibited	$0 \sim 1$ [0]

0: motor allows reverse rotation
1: the motor is not allowed to reverse.
In fact, negative frequency is prohibited. When reverse operation is prohibited and reverse operation is prohibited, the frequency inverter keeps running at 0 Hz .

F0-04 $=1$ should be set when the motor is not allowed to rotate reversely.

F0 - 05 phase sequence direction	$0 \sim 1[0]$

0 : standard phase sequence.
1: carry out phase sequence exchange. (The direction of rotation of the motor changes)

F0 - 06 start protection selection	$0 \sim 1$ [0]

0: start unprotects. As long as there is a start command and there is no fault, the frequency inverter will output and run.
1: start protection.
If the operation command of the frequency inverter is valid at power-up time (for example, the terminal operation command is closed before power - up), then the frequency inverter will not respond to the operation command, You must remove the operation command once before the frequency inverter responds.
If the operation command is valid at the time of frequency inverter fault reset and the frequency inverter does not respond to the operation command, the operation command must be removed before the operation protection state can be eliminated.
It can prevent the danger caused by the motor responding to the operation command when the motor is powered on or when the fault is reset without knowing.

F0 -07 jog. K key function selection	$0 \sim 4[0]$

The JOG.K key is a multi-function key. The function of the JOG.K key can be set through this function code. This key can be used to switch between shutdown and operation.

0 : this key has no function.
1: keyboard command and remote operation switch. It refers to the switch of command source, that is, the switch between current command source and keyboard control (local operation). If the current command source is keyboard - controlled, this key function is invalid.

2: forward and reverse switching
Switches the direction of the frequency command through the jog. K key This function is only valid when the command source is the command channel of the operation panel.

3: forward jog through
Keyboard jog. K key to realize forward jog (FJOG).
4: reverse jog through
Keyboard jog. K key to realize reverse jog (RJOG).
F0 - 08 stop / reset key function selection $\quad 0 \sim 4$ [1]
0: STOP / RES key stop function is valid only in keyboard operation mode.
1: STOP / RES key stop function is valid under any operation mode

F0-09 preset frequency
0.00 ~ maximum frequencies [50.00 Hz]

When the frequency source is selected as "digital setting" or "terminal UP/DOWN", this function code value is the initial value for the frequency rate digital setting of the frequency inverter.

F0 -10 acceleration time 1	$0 \sim 65000 \mathrm{~S}$ [model determination]
F0 -11 deceleration time 1	$0 \sim 65000 \mathrm{~S}$ [model determination]

The acceleration time refers to the time required for the frequency inverter to accelerate from zero frequency to the acceleration and deceleration reference frequency (F0-13 is determined), as shown in figure 5-1, t1.

Deceleration time refers to the time required for the frequency inverter to decelerate to zero frequency from the acceleration and deceleration reference frequency (F0-13), as shown in figure 5-1, t2.

Figure 5-1 schematic diagram of acceleration and deceleration time
HV480 defines a total of 4 groups of acceleration and deceleration times. The user can use the digital input terminal X to switch between selections. The four groups of acceleration and deceleration times are set by the following function codes:

Group 1: F0-10, F0-11; Group 2: F6-17, F6-18;
Group iii: F6-19, F6-20; Group 4: F6-21, F6-22.

$$
\begin{array}{l|l}
\text { F0 }-12 \text { acceleration / deceleration time unit } & 0 \sim 2 \text { [1] }
\end{array}
$$

0 : the time unit is 1 s .
1: the unit of time is 0.1 s
2: the unit of time is 0.01 s .

Notes:

When modifying this function parameter, the number of decimal points displayed in the four groups of acceleration and deceleration times will change, and the corresponding acceleration and deceleration times will also change. Special attention should be paid to this during application.

F0 -13 acceleration and deceleration time reference frequency	$0 \sim 2[0]$

0 : the reference frequency is the maximum frequency ($\mathrm{FO}-16$)
1: set the frequency at the reference frequency.
When F0-13 is selected as 1 , the acceleration and deceleration time is related to the set frequency. If the set frequency changes frequently, the acceleration of the motor will change. Attention should be paid when applying.

2: 100 Hz at reference frequency.

F0 -14 shutdown mode	$0 \sim 1[0]$

0 : after the deceleration
Stop command is valid, the frequency inverter will reduce the output frequency according to the deceleration time, and stop after the frequency is reduced to 0 .
1: after the free
Stop command is valid, the frequency inverter will terminate the output immediately. At this time, the motor will stop freely according to the mechanical inertia.

F0 - 15 droop control rate	$0 \sim 10.00 \mathrm{hz}$ [0.00hz]

The droop rate allows for a slight speed difference between the master station and the slave station, thus avoiding the rush between them. The default value for this parameter is 0 .

Only when the main engine and the slave engine adopt the speed control mode will the droop rate need to be adjusted. For each transmission process, the appropriate droop rate needs to be gradually found in practice. It is recommended not to set F0-15 too large, otherwise the steady-state speed will drop significantly when the load is large. Both the master and slave must set the droop rate.
Droop speed = synchronous frequency * output torque * (droop rate / 10)
For example: F0-15 = 1.00
50 Hz synchronous frequency rate, 50% output torque, real frequency rate of frequency changer $=50 \mathrm{~Hz}-50$ * $(50 \%)(1.00 / 10)=47.5 \mathrm{hz}$

F0 - 16 maximum frequencies	$50.00 \sim 500.00 \mathrm{hz}[50.00 \mathrm{hz}]$

The analog input, pulse input (X5), multi-segment instruction, etc. are all 100.0% of the respective calibration of F0-16 when they are used as frequency sources.

F0 - 17 upper frequency sources	$0 \sim 5[0]$

0 : set by FO-18.
1: set by analog Al1.
2: set by analog AI2.
3: set by analog AI3.
4: set by digital pulse quantity X5.
5: through communication settings.

F0 -18 upper limit frequency	Upper limit frequency \sim maximum frequency $[50.00 \mathrm{~Hz}]$
F0 -19 upper frequency offset	Upper limit frequency \sim maximum frequency $[50.00 \mathrm{~Hz}]$

When the upper limit frequency source is set to analog quantity or pulse setting, F0-19 is used as the offset amount of the set value, and the offset frequency is superposed with the upper limit frequency value set by F0-17 as the set value of the final upper limit frequency.

F0 - 20 lower limit frequency	$0.00 \mathrm{~Hz} \sim$ upper limit frequency [0.00 Hz$]$
F0 - 21 operating formula for setting frequency lower $0 \sim 2[0]$	

When the frequency command is lower than the lower limit frequency set by F0-20, the frequency inverter can be stopped, run at the lower limit frequency, or run at zero speed. Which operating mode can be set by F0 - 21 (operating mode with the set frequency lower than the lower limit frequency).

```
F0-22 carrier frequency
0.5 kHz~ 16 kHz [model determination]
```

This function adjusts the carrier frequency of the frequency inverter. By adjusting the carrier frequency, the noise of the motor can be reduced, the resonance point of the mechanical system can be avoided, the line current to the floor drain can be reduced, and the interference generated by the frequency inverter can be reduced.

When the carrier frequency is low, the higher harmonic component of the output current increases and the motor loss increases, and the temperature rise of the motor increases.

When the carrier frequency is high, the motor loss decreases and the temperature rise of the motor decreases, but the frequency inverter loss increases and the frequency inverter temperature increases.

The rise increases and the interference increases. Adjusting the carrier frequency will affect the following performance:

Carrier frequency	Low \rightarrow high
Motor noise	Big \rightarrow small
Output current waveform	Poor \rightarrow good
Motor temperature rise	High \rightarrow low
Temperature rise of frequency	Low \rightarrow high
Leakage current	Small \rightarrow big
External radiation interference	Small \rightarrow big

The factory setting of carrier frequency is different for frequency inverters with different power. Although users can modify it according to their needs, and they need to pay attention: if the carrier frequency setting is higher than the factory value, and the temperature rise of the frequency inverter radiator will increase. At this time, users need to use the frequency inverter by derating; otherwise the frequency inverter is in danger of overheating alarm.

```
F0-23 carrier frequencies adjusts with load size
0~1 [1]
```

The carrier frequency is adjusted with the load, which means that when the frequency inverter detects that the load exceeds the rated level, and it will automatically reduce the carrier frequency so as to reduce the temperature rise of the frequency inverter.

When the load decreases to a certain extent, the carrier frequency gradually returns to the set value. This function can reduce the chance of over-heating alarm of frequency inverter.

```
F0-24 LED shutdown operation display selection 
```

0 : shutdown operation display is separated.
During operation, the LED display content is set by F0-37 / F0-38.
When shutting down, the LED display content is set by F0-39.
1: stop operation display does not separate

During operation, the LED display content is set by F0-37 / F0-38.
When shutting down, the LED display content is set by F0-37 / F0-38.

F0-26 digital setting frequency shutdown memory selections
 $0 \sim 1$ [1]

This function is only valid when the frequency source is set digitally.
0 : "no memory" means that after the frequency inverter is shut down, the digital set frequency value is restored to F0-09 (preset frequency) values, keyboard $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys or frequency correction by terminals up and down are cleared.

1: "memory" means that after the frequency inverter is shut down, the digital set frequency will remain the set frequency at the time of the last shutdown. Frequency correction by keys $\mathbf{\Lambda}, \boldsymbol{V}$ or terminals up and down remains valid.
FO - 27 runtime frequency command up / down reference $0 \sim 1$ [1]
This parameter is valid only if the frequency source is set digitally.
0 : the operating frequency is the benchmark.
When the $\boldsymbol{\triangle}, \boldsymbol{\nabla}$ keys or terminals up / down of the keyboard are operated, what method is used to correct the set frequency, that is, the target frequency rate is increased or decreased based on the operating frequency. 1: set frequency as reference.

When the $\boldsymbol{\Lambda}, \boldsymbol{V}$ keys or terminals up / down of the keyboard are operated, what method is used to correct the set frequency, that is, the target frequency the rate is increased or decreased based on the set frequency.

The difference between the two settings is obvious when the frequency inverter is in the process of acceleration and deceleration, that is, if the frequency of operation of the frequency inverter, When the rate is different from the set frequency, the different choices of this parameter are very different.

F0 - 28 motor selection	$0 \sim 1[0]$

HV480 supports the application of time-sharing drive of two motors by frequency inverters. The two motors can respectively set motor nameplate parameters, independent parameter tuning, select different control modes, and independently set parameters related to operation performance, etc. The user selects the current motor parameter group through the F0-28 function code, and who can also switch the motor parameters through the digital quantity input terminal X. When the function code selection conflicts with the terminal selection, the terminal selection shall prevail

0 : motor 1.
The corresponding functional parameter groups of motor parameter group 1 are f 1 group and F 2 group.
1: motor 2
Motor parameter group 2 corresponds to functional parameter group FB.

F0 - 29 auxiliary frequency source y	$0 \sim 9[0]$

When the auxiliary frequency source is given a channel as an independent frequency (i.e. the frequency source is selected as X to Y switch), its usage is the same as that of the main frequency source X. the usage method can refer to the relevant description of F0-03.
When the auxiliary frequency source is used for superposition and given (i.e. the composite implementation frequency of the main frequency source X and the auxiliary frequency source Y is given), attention should be paid to:

1. When the auxiliary frequency source is given by numbers, the preset frequency (F0-09) does not work, and the user can select the preset frequency (F0-09) through the keyboard $\mathbf{\Delta}, \boldsymbol{\nabla}$ key (or up and down of multi-function input terminal) adjusts the frequency directly on the basis of the main given frequency.
2. When the auxiliary frequency source is given by analog input (Al1, Al2, and Al3) or pulse input, the input setting of 100% corresponds to the auxiliary frequency source range, which can be set through F0-30 and F0-31.
3. Frequency source for pulse input timing, similar to analog given. Tips: the selection of the auxiliary frequency source Y and the selection of the main frequency source X cannot be set to the same channel, i.e. F0-03 and F029 should not be set to the same value, otherwise it will easily cause confusion.

F0 - 30 Selection of Y range of auxiliary frequency source during superposition	$0 \sim 1[0]$
F0 - 31 Auxiliary frequency source Y range when is superimposed	$0 \sim 150 \%[0 \%]$

These two parameters are used to determine the adjustment range of the auxiliary frequency source when the frequency source is selected as "frequency superposition".

F0-30 is used to determine the object corresponding to the auxiliary frequency source range. It can be selected to be relative to the maximum frequency, or it can be with respect to the main frequency source x, if selected with respect to the main frequency source, the range of the auxiliary frequency source will vary with the change of the main frequency X.

F0 - 32 frequency source superposition selection	$0 \sim 34$ [0]

The given channel of frequency is selected through this parameter. The frequency is given by the combination of the main frequency source X and the auxiliary frequency source Y.

Bit: frequency selection. Select the mode of frequency superposition or switching.
0 : only the primary frequency X and the secondary frequency Y do not overlap. $\mathrm{F}=\mathrm{X}$ 。
1: the superposition mode of frequency is determined by 10 bits.
2: the main frequency X and the auxiliary frequency Y are switched through the No. 18 function of the X terminal. Function terminal No. 18 is closed for auxiliary y, and the terminal is broken on for the main frequency Y

3: main frequency X and main and auxiliary operation results switch. Terminal switching function is No. 18.
4: secondary frequency Y and primary and secondary operation results switch. Terminal switching function code No. 18.

10 bits: frequency primary and secondary operation relation
$0: X+Y$
1: $X-Y$
2: $\min (X, Y)$, whichever is the maximum in the primary and secondary
3: max (X, Y), minimum value in main and auxiliary
F0 - 33 Offset frequency of auxiliary frequency source when is superimposed

0 ~ maximum frequencies $[0.00 \mathrm{~Hz}]$
When the frequency source is selected as the main and auxiliary operation, the offset frequency can be set through FO-33, and the offset frequency can be superimposed on the main and auxiliary operation results to flexibly cope with various requirements.
FO - 34 command source bundling frequency source $\quad 0 \sim 999$ [000]

Bit: panel command binding frequency source selection
0 : no binding
1: digital setting frequency source.
2: Al1
3: Al2
4: Al3
5: pulse quantity X 5
6: multi-segment speed
7: simple PLC
8: PID
9: communication given
10 bits: terminal command binding frequency source selection ($0 \sim 9$, same bit)
100 bits: communication command binding frequency source selection ($0 \sim 9$, same bit)

Defines the binding combination between three kinds of operation command channels and nine kinds of frequency given channels to facilitate synchronous switching change.

The meaning of the given channel of the above frequency is the same as that of F0-03 selected by the main frequency source X . please refers to F0-03 function code descriptions. Different run command channels can bind a given channel with the same frequency.

When the command source has a bundled frequency source, other set frequency sources will no longer function during the period when the command source is active.
FO - 35 cooling fan control $\quad 0 \sim 1[0]$

0 : fan running when running;
The frequency inverter operates the fan in the running state, the fan rotates when the radiator temperature is higher than 40 degrees in the shutdown state, and the fan does not operate when the radiator temperature is lower than 40 degrees in the shutdown state.
1: the fan has been running all the time;
The fan has been running since it was powered on.

F0 - 36 forward and reverse dead time	$0.0 \mathrm{~s} \sim 3000.0 \mathrm{~s}[0.0 \mathrm{~s}]$

Set the transition time at the output of 0 Hz during the forward and reverse transition of the frequency inverter, as shown in figure 5-02:

Figure 5-02 schematic diagram of dead time for forward and reverse rotation

F0 -37 operating parameter 1	$0000 \sim$ FFFF [H401F]

F0 -38 operating parameter 2	$0000 \sim$ FFFF [H401F]

F0 - 39 shutdown parameters $\quad 0000 \sim$ FFFF [H401F]

Please refer to the instructions in appendix 2.

F0-40 load speed display factor

$0.0001 ~ 6.5000$ [3.0000]
When it is necessary to display the load speed, the corresponding relation between the output frequency of the frequency inverter and the load speed is adjusted through this parameter. Please refer to F0 - 41 for specific correspondence.

F0 - 41 load speeds displays decimal places	$0 \sim 32[21]$

Bit:
Used to set the number of decimal places for load speed display. The following example illustrates how to calculate the load speed:
If the load speed (u0-14) shows a coefficient F0-40 of 2.000 and the number of decimal places F0-40 of the load speed is 2 (2 decimal places), when the frequency inverter is running at 40.00 Hz , the load speed is $40.00 * 2.000=$ 80.00 (2 decimal point display)

If the frequency inverter is stopped, the load speed is displayed as the speed corresponding to the set frequency, i.e. "set load speed ". Taking the set frequency of 50.00 Hz as an example, the load speed in shutdown state is 50.00 * $2.000=100.00$ (2 decimal point display)

10 bits:
1: U0-19 / U0-29 are displayed with 1 decimal point respectively.
2: U0-19 / U0-29 are displayed with 2 decimal point respectively.
F0-43 personality parameter mode display selection $\quad 0 \sim 11$ [00]
Bit: user specified parameter display selection
0 : not displayed
1: display
10 bits: user changes parameter display selection
0 : not displayed
1: Display
The setting up of the parameter display mode is mainly to facilitate users to view the functional parameters of different arrangement modes according to actual needs, and to provide three parameter display modes.

Name	Description
Function parameter mode	The functional parameters of the frequency inverter are displayed in sequence, including F0~FP, P0 ~P3, U0~ UF functional parameter groups
User - customized parameter method	The user customizes the individual function parameters displayed (up to 32). The user determines the function parameters to be displayed through the Fe group.
Method for user to change parameters	Functional parameters inconsistent with factory parameters

When there is a display for personality parameter mode display selection (F0-43), you can switch to different parameter display modes through quick key at this time. The default value is only function parameter mode display.

F0-44 function code modification attribute

$0 \sim 1$ [0]
0: modifiable, user can modify function code through panel keyboard or communication.
1: cannot be modified. All function codes can only be viewed and cannot be modified.

F0 - 45 keyboard knob sensitivity	$0 \sim 3$ [2]

The greater the F0-45 setting, the more sensitive the keyboard shuttle (or up down operation) is, the smaller the setting, and the less sensitive it is.

Note: this function is only valid for up and down addition and subtraction of level 0 menus, and other functions are invalid.

F0 - 46 user password	$0 \sim 65535[0]$

F0 - 46 sets any non-zero number, the password protection function takes effect. The next time you enter the menu, you must enter the password correctly, and otherwise you cannot view and modify the function parameters. Please keep in mind the user password you have set. If F0-46 is set to 00000, then the set user password will be cleared and the password protection function will be invalid.

F0 - 47 initialization	$0 \sim 65535$ [0]

0: no operation.
1001: restore factory settings, excluding motor parameters
After setting FO - 47 as 1001, most of the frequency inverter function parameters are restored to factory parameters, but motor parameters, frequency command decimal point, fault record information, accumulated running time, accumulated power-on time, and accumulated power consumption are not restored.

1002: clear record information
Clear frequency inverter fault record information, accumulated running time, accumulated power-on time, and accumulated power consumption.

F1 Group first motor parameters

F1 - 01 rated power	$0.1 \mathrm{~kW} \sim 1000.0 \mathrm{~kW}$ [model determination]
F1-02 rated voltage	$1 \mathrm{~V} \sim 2000 \mathrm{~V}$ [model determination]
F1-03 rated current	$0.01 \mathrm{~A} \sim 655.35 \mathrm{~A}$ (frequency inverter power $<=55 \mathrm{Kw}$)
F1-04 rated frequency	$0.01 \mathrm{~Hz} \sim$ maximum frequency [model determination]
F1-05 rated rotational speed	$1 \mathrm{rpm} \sim 65535 \mathrm{rpm}[$ model determination]

Set the parameters of the controlled motor
In order to ensure the control function, be sure to set F1-01~F1-05 correctly according to the nameplate parameters of the motor.

In order to obtain better VF or vector control performance, motor parameters need to be tuned, and the accuracy of the adjustment results is closely related to the correct setting of motor nameplate parameters.

F1-06 stator resistance of asynchronous motor	$0.001 \Omega \sim 65.535 \Omega$ (frequency inverter power $\leq 55 \mathrm{~kW}$) 0.0001 ~ 6.5535 (frequency inverter power > 55kW) [model determination]
F1-07 rotor resistance of asynchronous motor	$0.001 \Omega \sim 65.535 \Omega$ (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.0001 \sim 6.5535$ (frequency inverter power > 55kW) [model determination]
F1-08 induction motor leakage reactance	$0.01 \sim 655.35 \mathrm{mH}$ (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.001 \sim 65.535 \mathrm{mH}$ (frequency inverter power > 55 kW) [model determination]
F1-09 mutual inductance reactance of asynchronous motor	$0.1 \sim 6553.5 \mathrm{mH}$ (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.01 \sim 655.35 \mathrm{mH}$ (frequency inverter power > 55 kW) [model determination]
F1-10 asynchronous motor no-load current	$0.01 \mathrm{~A} \sim$ F1 - 03 (frequency inverter power $\leq 55 \mathrm{~kW}$) $0.1 \mathrm{~A} \sim$ F1-03 (frequency inverter power > 55kW) [model determination]

F1-06 \sim F1-10 is parameters of asynchronous motors. These parameters are generally not found on the motor nameplate and need to be automatically tuned by the frequency inverter. Among them, "asynchronous motor static tuning" can only obtain F1-06~F1-08 three parameters, while " asynchronous motor complete tuning" can obtain not only all five parameters here, but also encoder phase sequence, current loop PI parameters, etc.

When changing the rated power of the motor (F1-01) or the rated voltage of the motor (F1-02), the frequency inverter will automatically modify the F1-06~F1-10 parameter values to restore these 5 parameters to the common standard Y series motor parameters. If it is impossible to tune the asynchronous motor on site, you can enter the above-mentioned corresponding function code according to the parameters provided by the motor manufacturer.

F0 - 29 motor parameters self - tuning	$0 \sim 3[0]$

0 : no operation.
1: simple static self - tuning.
It is suitable for asynchronous motors where large inertia loads are not easy to disengage and cannot be rotated.
2: rotational self - tuning
During the complete setting process, the frequency inverter will first perform static setting, and then accelerate to 80% of the rated frequency of the motor according to the acceleration time F0-10. After maintaining for a period of time, the frequency inverter will slow down and shut down according to the deceleration time F0-11 and end the setting.

3. Advanced static self-tuning

Is applicable to the case where there is no encoder, and the motor parameters are self-learned when the motor is at rest (at this time, the motor may still have slight shaking)
Description:

1. Tuning supports motor tuning in keyboard operation mode, terminal mode and communication mode.
2. In order to ensure the optimal control performance of the frequency inverter during vector control, please disconnect the load from the motor and use rotational tuning to self-learn the motor parameters; otherwise it will affect the vector control effect. Please use static tuning 2 when the motor has a large inertia load which is not easy to disengage and vector control is required.

3. Steps

3.1 Motor type and nameplate parameters F1-00~F1-05 must be set correctly.
3.2 F1-29 = 1 or 2 or 3 . The panel displays the word STUDY at this time.
3.3 Then press the run key, and the frequency inverter will be set.
3.4 When the operation light on the panel goes out, it indicates that the setting is done.

F2 Group motor vector control parameters

F2 group function codes are only valid for vector control and invalid for VF control.

F2 - 00 speed loop proportional gain kp1	$1 \sim 100[30]$
F2 - 01 speed loop proportional gain Ti1	$0.01 \sim 10.00[0.50 \mathrm{~s}]$
F2 - 02 switching frequency f1	$0.00 \sim$ F2-05 $[5.00 \mathrm{hz}]$
F2 - 03 speed loop proportional gain kp2	$1 \sim 100[20]$
F2 - 04 speed loop proportional gain Ti2	$0.01 \sim 10.00[1.00 \mathrm{~s}]$
F2 - 05 switching frequency F2	F2 $-05 \sim$ maximum frequency $[10.00 \mathrm{~Hz}]$

The frequency inverter operates at different frequencies, and different PI parameters of the speed loop can be selected.

When the operating frequency is less than the switching frequency 1 (F2-02), the speed loop pi adjustment parameters are F2-00 and F2-01.
When the operating frequency is greater than the switching frequency 2, the speed loop pi adjustment parameters are F2-03 and F2-04.
The speed loop pi parameters between switching frequency 1 and switching frequency 2 are linearly switched by two sets of pi parameters, as shown in figure 5-03:

Figure 5-03 pi parameter diagram
By setting the proportional coefficient and the integration time of the speed regulator, the speed dynamic response characteristics of the vector control can be adjusted.

Increasing the proportional gain and decreasing the integration time can accelerate the dynamic response of the speed loop. However, too much proportional gain or too little integration time may cause the system to oscillate.

The suggested adjustment method is:
If the factory parameters cannot meet the requirements, fine-tune them based on the factory value parameters to increase the proportion and benefit first, so as to ensure that the system does not oscillate. Then reduce the integration time so that the system has faster response characteristics and less overshoot.

For vector control without speed sensor, this parameter is used to adjust the speed stability accuracy of the motor: when the motor is loaded with low speed, this parameter is increased, and vice versa.

Note: improper setting of pi parameters may lead to excessive speed overshoot. Even when overshoot falls back, over-voltage faults occur.

F2-06 vector controlled slip gain	$50 \% \sim 200 \%[100 \%]$
F2-07 SVC torque filter time constant	$0.000 \mathrm{~s} \sim 0.100 \mathrm{~s}[0.000 \mathrm{~s}]$
F2-09 torque upper limit source under speed control mode	$0 \sim 5[0]$
F2-10 torque upper limit digital setting under speed control mode	$0.0 \% \sim 200.0 \%[150.0 \%]$

In the speed control mode, the maximum output torque of the frequency inverter is controlled by the torque upper limit source. 0: set by F2-10 digits.
1: Al1 analog setting.
2: Al2 analog setting.
3: A13 analog setting.
4: XI pulse setting.
5: Communication settings.
Description:
F2 - 09 is used to select the setting source of the upper torque limit. When setting through analog quantity, PULSE pulse and communication, 100% of the corresponding setting corresponds to F2-10, while 100 \% of F2-10 is the rated torque of the frequency inverter. For AI1, $\mathrm{Al} 2, \mathrm{Al} 3, \mathrm{X} 5$ settings, please refer to the introduction of F 4 Al curve.
When the selection is communication setting
The host computer writes $-100.00 \% \sim 100.00 \%$ of the data through the communication address 0×1000, of which 100.00 \% corresponds to F2-10.

F3 Group V/F control parameters

This group of function codes is only valid for V/F control and invalid for vector control.
F3-00 V/F curve setting $\quad 0 \sim 11[0]$

0 : straight line V/F.
Suitable for common constant torque load.
1: multipoint V/F.
Suitable for special loads such as dehydrators and centrifuges at this time, by setting F3-03 to F3-08 parameters, any desired VF relation curve can be obtained.

2: square V/F. Suitable for centrifugal loads such as fans and water pumps.
3 ~ 8: VF relation curve between straight line VF and square VF.
10: VF complete separation mode.
At this time, the output frequency of the frequency inverter and the output voltage are independent of each other. The output frequency is determined by the frequency source, while the output voltage is determined by F3-13 (VF separated voltage source).

VF complete separation mode is generally used in induction heating, frequency inverter power supply, torque motor control and other occasions.
11: VF semi-detached mode.
V and F are proportional in this case, but the proportional relationship can be set by the voltage source F3-13, and V and F are the relationship is also related to the rated voltage and frequency of $F 1$ group motors.

Assuming that the voltage source input is $\mathrm{X}(\mathrm{X}$ is a value of $0-100 \%$), the relationship between the frequency inverter output voltage v and frequency f is: V/F = 2 * X * (rated voltage of motor) / (rated frequency of motor)

F3 - 01 torque boost	$0.0 \% \sim 30 \%$ [model determination]
F3 - 02 torque boost cutoff frequency	$0.00 \mathrm{~Hz} \sim$ maximum output frequency [50.00 Hz]

In order to compensate for the V/F control low frequency torque characteristics, the frequency inverter output voltage is compensated for some lift at low frequency. However, the setting of torque increase is too large, the motor is easy to overheat, and the frequency inverter is easy to over current.

This parameter is recommended to be increased when the load is heavy and the starting torque of the motor is insufficient. The torque lift can be reduced when the load is light.

When the torque increase is set to 0.0 , the frequency inverter will automatically increase the torque. At this time, the frequency inverter will automatically calculate the required torque increase value based on the motor stator electrical resistance and other parameters.
Torque boost torque cutoff frequency: under this frequency, the torque boost torque is valid. If it exceeds this set frequency, the torque boost will fail. See figure 5-04 for details.

Figure 5-04 schematic diagram of manual torque boost (The lifting amount is the shaded part)

F3-03 V/F frequency value f1	$0.00 \mathrm{~Hz} \sim \mathrm{~F} 3-05[0.00 \mathrm{~Hz}]$
F3-04 V/F voltage v1	$0.0 \% \sim 100.0 \%[0.0]$
F3-05 V/F frequency value F2	$\mathrm{F} 3-03 \sim \mathrm{~F} 3-07[0.00 \mathrm{~Hz}]$
F3-07 V/F frequency value F3	$\mathrm{F} 3-05 \sim$ rated frequency of motor $(\mathrm{f} 1-04)$ $[0.00 \mathrm{~Hz}]$
F3-08 V/F voltage v3	$0.0 \% \sim 100.0 \%[0.0]$

1. The curve of multi-point V/F shall be set according to the load characteristics of the motor. When setting, it is necessary to confirm that the following conditions are established: v1 < v2 < v3, f1 < F2 < F3.
2. Figure $5-05$ is a schematic diagram of setting multi-point VF curve.

Too high voltage setting at low frequencies may cause the motor to overheat or even burn down, and the frequency inverter may be over-run or over-current protected.

Figure 5-05 multi-point V/F curve setting diagram

$$
\begin{array}{|l|l|}
\hline \text { F3 - } 09 \text { VF slip compensation gain } & 0 \% \sim 200.0 \%[0.0 \%] \\
\hline
\end{array}
$$

VF slip compensation can compensate the motor speed deviation of asynchronous motor when the load increases, so that the motor speed can basically remain stable when the load changes.
VF slip compensation gain is set to 100.0 \%, which indicates that the compensated slip is the rated slip of the motor when the motor is under rated load.

When adjusting VF slip compensation gain, it is generally based on the principle that the motor speed is basically the same as the target speed under the rated load. When the motor speed is different from the target value, it is necessary to adjust the gain appropriately.

F3-10 VF over-excitation gain
 $$
0 ~ 200 \text { [64] }
$$

In the process of frequency inverter deceleration, over-excitation control can suppress the rise of bus voltage and avoid over-voltage fault. The greater the over-excitation gain, the stronger the suppression effect.

When the frequency inverter is prone to over-voltage alarm during deceleration, it is necessary to increase the over-excitation gain. However, the over-excitation gain is too large, which easily leads to an increase in the output current and needs to be weighed in the application.

When the inertia is very small, no voltage rise will occur during motor deceleration, it is recommended to set the over-excitation gain to 0 . It is also recommended to set the over-excitation gain to 0 when there is a braking resistance.

F3-11 VF oscillation suppression gain	$0 \sim 100$ [model determination]

The gain is chosen to be as small as possible on the premise of validly suppressing oscillation so as not to adversely affect VF operation. Please select the gain of 0 when the motor does not oscillate. Only when the motor is obviously oscillating can the gain be appropriately increased. The greater the gain, the more obvious the suppression of oscillation is.

When using the function of suppressing oscillation, it is required that the rated current and no-load current parameters of the motor are accurate, otherwise VF oscillation suppression effect is not good.

F3-13 VF separated voltage source	$0 \sim 8[0]$
F3-14 VF separated voltage digital setting	$0 \sim$ Rated voltage of motor $[0]$

VF separation is generally used in induction heating, frequency inverter power supply, torque motor control and other occasions.

When VF separation control is selected, the output voltage can be set through function code F3-14, or it can come from analog quantity, multi - Segments instruction, PLC, PID or communication given. When non-digital setting is used, each set 100% corresponds to the rated voltage of the motor, and when the percentage set by the analog output is negative, the set absolute value is taken as the valid setting value.

0 : the digital setting (F3-14) Voltage is set directly by F3-14.
1: Al1
2: Al2
3: Al3
The voltage is determined by the analog input terminal.
4. Pulse pulse setting (XI5)

Voltage is given by terminal pulse.
Pulse given signal specification: voltage range $9 \mathrm{~V} \sim 30 \mathrm{~V}$, frequency range $0 \mathrm{kHz} \sim 100 \mathrm{kHz}$.
5. Multiple instructions

When the voltage source is a multi-segment instruction, F5 group and FC group parameters should be set to determine the correspondence between a given signal and a given voltage. The FC group parameter multi-segment command gives 100.0%, which is the percentage relative to the rated voltage of the motor.
6. When the simple PLC

Voltage source is a simple PLC, FC group parameters need to be set to determine the given output voltage.
7. PID

The output voltage is generated according to the PID closed loop. Please refer to FA group PID for details.
8. Communication given

The voltage is given by the upper computer through communication.
VF separation voltage source selection is similar to frequency source selection; see F0-03 main frequency source selection introductions. Of which, 100.0% of the corresponding setting for each type of selection refers to the rated voltage of the motor (taking the absolute value of the corresponding setting value)

F3 - 15 VF separation voltage acceleration time	$0.0 \mathrm{~S} \sim 1000.0 \mathrm{~S}[0.0 \mathrm{~S}]$
F3-16 VF separation voltage deceleration time	$0.0 \mathrm{~S} \sim 1000.0 \mathrm{~S}[0.0 \mathrm{~S}]$

The voltage acceleration time for VF separation refers to the time required for the output voltage to accelerate from 0 to the rated voltage of the motor, as shown in T1 in figure 5-06.

The voltage deceleration time for VF separation refers to the time required for the output voltage to decelerate from the rated voltage of the motor to 0 , as shown in figure $5-06$.

Figure 5-06V/F separation diagram

$$
\begin{array}{l|l}
\text { F3-17 VF Shutdown mode for separations } & 0 \sim 1[0]
\end{array}
$$

0 : frequency and voltage independently reduced to 0 .
1: the voltage is reduced to zero before the frequency is reduced.

Figure 5-07V/F separation shutdown process diagram

F4 Group output terminals

F4-00 FM terminal output mode selection
 $0 \sim 1$ [0]

The FM terminal is a programmable multiplex terminal, which can be used as a high-speed pulse output terminal (FMP) or as a switch output terminal (FMR) with open collector.

0 : high-speed pulse output terminal.
When outputting FMP as pulse, the highest frequency of the output pulse is 100 kHz . See F4-06 for FMP related functions instruction.

1: Open collector output terminal.
When switching output is used, the output function is set by F4-01 function code.

F4-01 FM Open collector output terminal	$0 \sim 42[0]$
F4-02 relay output function selection (T/A-T/B-T/C)	$0 \sim 42[2]$
F4-04 DO1 open collector output terminal	$0 \sim 42[0]$

The function of the multi-function output terminal is explained as follows:

Setting value	Functionalities	Description
0	No output	The output terminal has no function
1	The frequency inverter is in operation	Indicates that the frequency inverter is running and has an output frequency (which can be zero). At this time, the on signal is output.

Setting value	Functionalities	Description
2	Fault output (fault shutdown)	When the frequency inverter fails and the fault stops, an on signal is output.
3	Frequency level detection FDT1 output	Please refer to the descriptions of function codes F4-24 and F4-25.
4	Frequency arrival	Please refer to the description of function code F4-28.
5	Zero speed operation (no output during shutdown)	When the frequency inverter is running and the output frequency is 0 , the on signal is output. This signal is OFF when the frequency inverter is in shutdown state.
6	Motor overload pre - alarm	Before the motor overload protection action, judge according to the threshold of overload pre - alarm, and output an on signal after exceeding the pre-alarm threshold. Refer to function code F9-00~F9-02 for motor overload parameter setting.
7	frequency inverter overload pre alarm	Output on signal 10s before frequency inverter overload protection occurs.
8	Set the count value to reach	When the count value reaches the value set by F8-31, an on signal is output.
9	Specified count value arrives	When the count value reaches the value set by F8-32, an on signal is output. Refer to FB group function description for counting function
10	Length arrival	When the detected actual length exceeds the length set by F8 28 , an on signal is output.
11	PLC cycle completed	When the simple PLC runs through a cycle, a pulse signal with a width of 250 ms is output.
12	Accumulated operating time arrives	When the accumulated running time of the frequency inverter exceeds the time set by F8-01, an ON signal is output.
13	Frequency limit	When the set frequency exceeds the upper limit frequency or the lower limit frequency and the output frequency of the frequency changer also reaches the upper limit frequency or the lower limit frequency, an ON signal is output.
14	Torque limitation	In the speed control mode, when the output torque reaches the torque limit, the frequency inverter is in stall protection state and outputs an ON signal at the same time.
15	Operational readiness	When the power supply of the main circuit and the control circuit of the frequency inverter has stabilized and the frequency inverter has not detected any fault information, and the frequency inverter is in an operable state, an ON signal is output.
16	Al1>AI2	When the value of analog input Al1 is greater than the input value of Al 2 , an ON signal is input.
17	Upper frequency arrival	When the operating frequency reaches the upper limit frequency, an ON signal is input.
18	Lower limit frequency reached (not input during shutdown)	When the operating frequency reaches the lower limit frequency, an ON signal is input. This signal is OFF when the machine is stopped.
19	Under voltage state output	When the frequency inverter is in the under voltage state, an ON signal is input.
20	Communication settings	Please refer to the communication protocol.

Setting value	Functionalities	Description
21	Reserve	Reserve
22	Reserve	Reserve
23	Zero speed operation in 2 (also input during shutdown)	When the output frequency of the frequency inverter is 0 , the on signal is output. This signal is also in shutdown state.
24	Cumulative power-on time arrives	When the frequency inverter's accumulated power-on time (UO -71) exceeds the time set by F8-00, the frequency inverter outputs an on signal.
25	Frequency level detection FD T2 output	Please refer to the descriptions of function codes F4-26 and F4-27.
26	Frequency 1 reaches output	Please refer to the descriptions of function codes F4-29 and F4-30.
27	Frequency 2 reaches output	Please refer to the descriptions of function codes F4-31 and F4-32.
28	Current 1 reaches output	Please refer to the descriptions of function codes F4-33 and F4-34.
29	Current 2 reaches output	Please refer to the descriptions of function codes F4-35 and F4-36.
30	Timed arrival output	When the timing function selection (F8-04) is valid, the on signal will be output after the current running time of the frequency inverter reaches the set timing time.
31	Ai1 input overrun	When the value of analog input Al1 is greater than F4-37 (Al1 input protection upper limit) or less than F4-38 (Al1 input protection lower limit), the signal is input.
32	Off loading	When the frequency inverter is in the off-load state, an ON signal is output.
33	In reverse operation	When the frequency inverter is in reverse operation, an ON signal is output.
34	Zero current state	Please refer to the descriptions of function codes F4-33 and F4-34
35	Module temperature reached	When the frequency inverter module radiator temperature (UO - 69) reaches the set module temperature reaching value (F 4 39), an ON signal is output
36	Software current overrun	Please refer to the descriptions of function codes F4-42 and F4-43.
37	Lower limit frequency reached (shutdown also output)	When the operating frequency reaches the lower limit frequency, an ON signal is output. This signal is also ON during shutdown.
38	Alarm output	When the frequency inverter fails and the processing mode of the failure is continuous operation, the frequency inverter gives an alarm output.
39	The running time has arrived	When the starting operation time of the frequency inverter exceeds the time set by F8-07, the on signal is output.
40	Fault output	Under voltage does not output.
41	Al1 is lower than lower limit output	When the value of Al1 is lower than F4-37, output
42	Al1 above upper limit output	When Al1 value is higher than F4-38, output
43	Al2 output below lower limit	When Al2 value is lower than F4-37, output
44	Al2 above upper limit output	When AI2 value is higher than F4-38, output

F4-06 FM output function selection (pulse output terminal)	$0 \sim 16[0]$
F4-07 AO1 output function selection	$0 \sim 16[0]$
F4-08 AO2 output function selection	$0 \sim 16[1]$

The FMP terminal output pulse frequency ranges from 0.01 kHz to $\mathrm{F} 4-09$ (FMP output the maximum frequency), and F4-09 can be set between 0.01 kHz and 100.00 kHz .

The analog outputs AO 1 and AO 2 range from 0 V to 10 V , or 0 mA to 20 mA .
The calibration relationship between the range of pulse output or analog output and corresponding functions is shown in the following table:

Setting value	Functionalities	Description
0	Running frequency	$0 \sim$ maximum output frequency
1	Set frequency	$0 \sim$ maximum output frequency
2	Output current	$0 \sim 2$ times rated current of motor
3	Output torque (absolute value)	$0 \sim 2$ times rated torque of motor
4	Output power	$0 \sim 2$ times rated power
5	Output voltage	$0 \sim 1.2$ times rated voltage of frequency inverter
6	PULSE pulse input	$0.01 \mathrm{kHz} \sim 100.00 \mathrm{kHz}$
7	Al1	$0 \mathrm{~V} \sim 10 \mathrm{~V}$
8	Al2	$0 \mathrm{~V} \sim 10 \mathrm{~V}$ (or $0 \sim 20 \mathrm{~mA}$)
9	Al3	$0 \mathrm{~V} \sim 10 \mathrm{~V}$
10	Length	$0 \sim$ maximum set length
11	count value	$0 \sim$ maximum count value
12	Communication settings	$0.0 \%-100.0 \%$
13	Motor rotational speed	Rotational speed corresponding to $0 \sim$ maximum output frequency
14	Output current	$0.0 \mathrm{~A} \sim 1000.0 \mathrm{~A}$
15	Output voltage	When 0.0v to 1000.0 v
16	Output torque (actual value)	-2 x motor rated torque $\sim 2 \mathrm{x}$ motor rated torque

F4 - 09 FMP output maximum frequency	$0.01 \mathrm{kHz} \sim 100.00 \mathrm{kHz}[50.00 \mathrm{Khz}]$
F4 - 10 A01 zero offset coefficient	$-100.0 \% \sim+100.0 \%[0.0 \%]$
F4 - 11 A01 gain	$-10.00 \sim+10.00[1.00]$
F4 - 12 A02 zero offset coefficient	$-100.0 \% \sim+100.0 \%[0.0 \%]$
F4 -13 A02 gain	$-10.00 \sim+10.00[1.00]$

The above function codes are generally used to correct the zero offset of the analog output and the deviation of the output amplitude. It can also be used to customize the required $A O$ output curve.

If the zero offset is represented by " b ", the gain is represented by k, the actual output is represented by y, and the standard output is represented by x, the actual output is: $Y=k X+b * 10 \mathrm{~V}$.

Among them, the zero offset coefficient of AO1 and AO2 is 100% corresponding to 10 v (or 20 mA), and the standard output refers to the output of $0 \mathrm{~V}-10 \mathrm{~V}$ (or $0 \mathrm{~mA}-20 \mathrm{~mA}$) corresponding to the amount indicated by the analog output without zero offset and gain correction.

For example, if the analog output content is operating frequency, it is expected to output 8 v at frequency 0 and 3 v at maximum frequency, then the gain should be set to " -0.50 " and the zero offset should be set to " 80% ".

F4-17 FMR output delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}[0.0 \mathrm{~S}]$
F4-18 relay1 output delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}[0.0 \mathrm{~S}]$
F4-20 D01 output delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}[0.0 \mathrm{~S}]$

Set the output terminals FMR, relays 1, D01 to delay the change from the state to the actual output.

F4-22 selection of valid state of output terminal $\quad 00000 \sim 11111$ [00000]

```
BITO:FMR positive and negative logic definition
BIT1: relay 1 positive and negative logic definition
BIT3: D01 positive and negative logic definition
```

Figure 5-08

Defines the output logic of the output terminals FMR, relay 1, D01. 0: positive logic, the digital quantity output terminal and the corresponding common terminal are connected in a valid state and disconnected in an invalid state;

1: reverse logic, the connection between the digital quantity output terminal and the corresponding common terminal is invalid, and the disconnection is valid.

F4-24 frequency detection value (FD t1)	$0.00 \mathrm{~Hz} \sim$ maximum frequency [50.00 Hz]
F4-25 frequency detection lag value (FD t1)	$0.0 \% \sim 100.0 \%$ (FD t1 level) [5.0%]
F4-26 frequency detection value (FD T2)	$0.00 \mathrm{~Hz} \sim$ maximum frequency [50.00 Hz]
F4-27 frequency detection lag value (FD T2)	$0.0 \% \sim 100.0 \%$ (FDT2 level) [5.0%]

When the operating frequency is higher than the frequency detection value, the multi-function output (No. 03 FDT1, No. 25 FDT2) D0 of the frequency inverter outputs on signal, while when the frequency is lower than the detection value by a certain frequency value, the D0 output on signal is cancelled.

The above parameters are used to set the detection value of the output frequency and the hysteresis value of the release of the output action. Wherein F4-25/F4-27 is the percentage of lag frequency relative to the frequency detection value F4-24 / F4-26. Figs. 5-09 show the intent of the FDT function.

Figure 5-09 FDT level diagram

F4-28 frequencies reaches detection width	$0.00 \sim 100 \%$ (maximum frequency) [0.0 \%]

When the operating frequency of the frequency inverter is within a certain range of the target frequency, the multi-function (04) DO of the frequency inverter outputs an on signal.

This parameter is used to set the detection range of frequency arrival and this parameter is a percentage of the maximum frequency. Figure 5-10 is a schematic diagram of frequency arrival.

Figure 5-10 schematic diagram of frequency arrival detection amplitude

F4-29 random arrival frequency detection value 1	$0.00 \mathrm{~Hz} \sim$ maximum frequency [50.00 Hz]
F4-30 random arrival frequency detection width 1	$0.0 \% \sim 100.0 \%[0.0 \%]$
F4-31 random arrival frequency detection value 2	$0.00 \mathrm{~Hz} \sim$ maximum frequency $[50.00 \mathrm{~Hz}]$
F4-32 random arrival frequency detection width 2	$0.0 \% \sim 100.0 \%[0.0 \%]$

When the output frequency of the frequency inverter is within the positive and negative detection range of any frequency detection value, the multi-function DO (No. 26 and No. 27) outputs on signal

HV480 provides two groups of random arrival frequency detection parameters, setting frequency values and frequency detection ranges respectively. Figure 5-11 is a schematic diagram of this function.

F4-33 arbitrarily reaching current 1	$0.0 \% \sim 300.0 \%$ (rated current of motor) [100.0%]
F4-34 the width of current 1 is arbitrarily reach	$0.0 \% \sim 300.0 \%$ (rated current of motor) [0.0\%]
F4-35 arbitrarily reaching current 2	$0.0 \% \sim 300.0 \%$ (rated current of motor) [100.0\%]
F4-36 the width of current 2 is arbitrarily reach	$0.0 \% \sim 300.0 \%$ (rated current of motor) [0.0\%]

When the output current of the frequency inverter is set within the positive and negative detection width of any arriving current, the multi-function DO (No. 28 and No. 29) of the frequency inverter outputs on signal.

HV480 provides two groups of random arrival currents and detection width parameters. The detection principle is similar to F4-29~F4-32.

F4 - 37 Al1 input voltage protection value lower	$0.00 \mathrm{~V} \sim$ F4-38 $[3.1 \mathrm{~V}]$
F4 - 38 upper limit of Al1 input voltage	F4-37 $\sim 10.00 \mathrm{~V}[6.8 \mathrm{~V}]$

When the analog input value of Al1 is greater than F4-38, or Al1 input value is less than F4-37, the multi-function DO (31) of the frequency changer outputs an "Al1 input overrun" ON signal to indicate whether the input voltage of Al1 is within the set range.

F4 - 39 module temperatures reached	$0 \sim 100\left[75^{\circ} \mathrm{C}\right]$

When the frequency inverter radiator temperature reaches the temperature, the multi-function DO of the frequency inverter outputs the "module temperature reaches" ON message

F4 - 40 zero current detection level	$0.0 \% \sim 300.0 \%$ (rated current of motor) [5.0\%]
F4 - 41 zero current detection delay time	$0.00 \mathrm{~s} \sim 600.00 \mathrm{~s}[0.10 \mathrm{~s}]$

When the output current of the frequency inverter is less than or equal to the zero current detection level and the duration exceeds the zero current detection delay time, the frequency inverter multifunction (No. 34) DO outputs ON signal.

F4 - 42 output current overrun value	0.0% (no detection); $0.1 \% \sim 300.0 \% ~(~ r a t e d ~ c u r r e n t ~ o f ~ m o t o r ~) ~[~ 200.0 \% ~] ~$
F4-43 output current overrun detection delay	$0.00 \mathrm{~s} \sim 600.00 \mathrm{~s}[0.00 \mathrm{~s}]$

When the output current of the frequency inverter is greater than or exceeds the limit detection point and the duration exceeds the software over current point detection delay, the frequency inverter multifunction (No. 36) DO outputs on signal.

F5 Group input terminals

F5 - 00 X 1 terminal function selection	$0 \sim 60[1]$
F5 - 01 X 2 terminal function selection	$0 \sim 60[2]$
F5 - 02 X 3 terminal function selection	$0 \sim 60[9]$
F5 - 03 X 4 terminal function selection	$0 \sim 60[12]$
F5 - 04 X 5 terminal function selection	$0 \sim 60[13]$
F5 - 05×6 terminal function selection	$0 \sim 60[14]$
F5 - 06 X 7 terminals function selection	$0 \sim 60[8]$

These parameters are used to set the functions of the digital multi-function input terminals and the functions that can be selected are shown in the following table:

Setting value	Functionalities	Description
0	Nonfunctional	The unused terminals can be set to "no function" to prevent mis-operation.
1	Forward run (FWD)	The forward rotation and reverse rotation of the frequency inverter are controlled through external terminals.
2	Reverse run (REV)	
3	Three - wire operation control	Through this terminal, it is determined that the frequency inverter operation mode is a three-wire control mode. Please refer to the description of function code F5-11 ("terminal command method") for details.
4	Forward JOG (FJOG)	FJOG is JOG forward rotation, RJOG is JOG reverse rotation. Refer to the function code for JOG operation frequency and JOG acceleration / deceleration time description of F6-13, F6 -14, F6-15.
5	Reverse JOG (RJOG)	
6	Terminal UP	The increment and decrement instructions of the frequency are modified when the frequency is given by the external terminal. When the frequency source is set to digital setting, the setting frequency of the section can be adjusted up and down.
7	Terminal DOWN	
8	Free parking	The frequency inverter blocks the output. At this time, the stop process of the motor is not controlled by the frequency changer.
9	Fault reset (RESET)	The function of using terminals to reset faults. Same function as reset key on keyboard. This function can be used to reset the remote fault barrier.
10	Suspension of operation	The frequency inverter decelerates and stops, but all operating parameters are memorized. Such as PLC parameters, swing frequency parameters and PID parameters. After this terminal signal disappears, the frequency inverter returns to the operating state before parking.
11	External fault normally open input	When the signal is sent to the frequency inverter, the frequency inverter reports the failure ETF.
12	Multi-segment command terminal 1	The speed of 16 segments can be realized through 16 States of the four terminals. See attached table 1 for details.
13	Multi-segment command terminal 2	
14	Multi-segment command terminal 3	
15	Multi-segment command terminal 4	
16	Acceleration and deceleration time selection terminal 1	Through the four States of the two terminals, the choice between the four acceleration and deceleration times can be realized, see table 2 for details.
17	Acceleration and deceleration time selection terminal 2	
18	Frequency source switching	Used to switch and select different frequency sources. According to the setting of the frequency source selection function code (F0-32); this terminal is used to switch between two frequency sources when switching between two frequency sources is set as the frequency source.
19	UP/DOWN setting cleared (terminal, keyboard)	When the frequency is given as a digital frequency, this terminal can clear the frequency value changed by the terminal UP/DOWN or the keyboard UP/DOWN to restore the given frequency to the value set in FO-09.

Setting value	Functionalities	Description
20	Control command switching terminal 1	When the command source is set to terminal control (F0-02 = 1), this terminal can switch between terminal control and keyboard control. When the command source is set to communication control (FO $-02=2$), this terminal can switch between communication control and keyboard control.
21	Acceleration and deceleration prohibition	Ensure that the frequency inverter is not affected by external signals (except shutdown command) and maintain the current output frequency.
22	PID pause	The PID is temporarily disabled; the frequency inverter maintains the current output frequency and no longer performs PID adjustment of the frequency source.
23	PLC status reset	The PLC is suspended during the execution process. When the PLC runs again, the frequency inverter can be restored to the initial state of the simple PLC through this terminal.
24	The pendulum frequency suspended	The frequency inverter outputs at the center frequency. The frequency swing function is suspended.
25	Counter input	Input terminal of counting pulse.
26	Counter reset	The counter status is cleared.
27	Length count input	Input terminal for length count.
28	Length reset	Length zero clearing
29	Torque control prohibited	It is forbidden for the frequency inverter to carry out torque control, and the frequency inverter enters the speed control mode.
30	PULSE (Pulse) frequency input (valid only for X5)	X5 functions as a pulse input terminal.
31	Reserve	Reserve
32	Immediate DC braking	When this terminal is active, the frequency inverter switches directly to the DC braking state
33	External fault normally closed input	When the normally closed signal of an external fault is sent to the frequency inverter, the frequency inverter reports the fault ETF and stops the operation.
34	Frequency modification prohibition	If this function is set to active, when the frequency changes, the frequency inverter will not respond to the frequency change until the terminal status is active.
35	The direction of PID action is reversed	When this terminal is active, the direction of PID action is opposite to the direction set by FA - 03
36	External parking terminal 1	When the keyboard is controlled, this terminal can be used to stop the frequency inverter, which is equivalent to the function of the STOP key on the keyboard.
37	Control command switching terminal 2	Used for switching between terminal control and communication control. If the source is selected as terminal control, the system will switch to communication control when the terminal is active; on the contrary, it is also the opposite.
38	PID integral suspended	When this terminal is valid, the integral adjustment function of the PID is suspended, but the proportional adjustment and differential adjustment functions of the PID are still valid.
39	Frequency source X switches to preset frequency	If the terminal is valid, the frequency source X is replaced by a preset frequency (F0-09)
40	Frequency source Y switches to preset frequency	This terminal is valid, then the frequency source Y is replaced by a preset frequency (FO-09)

Setting value	Functionalities	Description
41	Motor selection terminal 1	2 sets of motor parameters can be switched through the 2 states of terminals, see table 3 for details.
42	Reserve	Reserve
43	PID parameter switching	When the PID parameter switching condition is X terminal (FA $18=1$), when the terminal is invalid, the PID parameters are FA - 05 ~ FA - 07; When the terminal is valid, FA - 15 ~ FA - 17 will be used.
44	User - defined fault 1	When user-defined faults 1 and 2 are valid, the frequency inverter alarms UEF1 and UEF2 respectively.
45	User - defined fault 2	
46	Motor overload pre - alarm	Before the motor overload protection action, judge according to the threshold of overload pre - alarm, and output an on signal after exceeding the pre-alarm threshold. Refer to function code F9-00~F9-02 for motor overload parameter setting.
47	Speed control / torque control switching	When the terminal is valid, the frequency inverter stops at the fastest speed, and the current is at the upper limit set during the stop. This function is used to meet the requirement that the frequency inverter needs to be shut down as soon as possible when the system is in an emergency.
48	External parking terminal 2	Under any control mode (panel control, terminal control, and communication control), this terminal can be used to slow down and stop the frequency inverter. The deceleration time at this time is fixed at deceleration time 4.
49	Deceleration DC brake	When this terminal is active, the frequency inverter will first slow down to the stop DC brake starting frequency and then switch to the DC brake state.
50	This run time is cleared	When this terminal is valid, the timing time of this operation of the frequency inverter is cleared. This function needs to be used in conjunction with the timing operation (F8-04) and the arrival of this operation time (F8-07).
51	Two - wire / three-wire switching	For switching between two-wire and three-wire control. If F5 11 is two-wire type 1 , switch to three-wire type 1 when the terminal function is valid. And so on.
52	Prohibition of reversal	This terminal is valid, and frequency inverter reversal is prohibited. Same function as F0-04.

Four multi-segment command terminals can be combined into 16 States, each of which corresponds to 16 command settings. Specific as shown in table 1:

Attached table 1 multi-paragraph instruction function description

K4	K3	K2	K1	Command setting	Corresponding parameter
OFF	OFF	OFF	OFF	Multi - segment instruction 0	FC-00
OFF	OFF	OFF	ON	Multi - segment instruction 1	FC-01
OFF	OFF	ON	OFF	Multi - segment instruction 2	FC-02
OFF	OFF	ON	ON	Multi - segment instruction 3	FC-03
OFF	ON	OFF	OFF	Multi - segment instruction 4	FC-04

Chapter V Description of parameters

K4	K3	K2	K1	Command setting	Corresponding parameter
OFF	ON	OFF	Multi - segment instruction 5	FC-05	
OFF	ON	OFF	Multi - segment instruction 6	FC-06	
OFF	ON	ON	Multi - segment instruction 7	FC-07	
ON	OFF	OFF	OFF	Multi - segment instruction 8	FC-08
ON	OFF	OFF	ON	Multi - segment instruction 9	FC-09
ON	OFF	OFF	Multi - segment instruction 10	FC-10	
ON	OFF	ON	Multi - segment instruction 11	FC-11	
ON	ON	OFF	Multi - segment instruction 12	FC-12	
ON	ON	ON	Multi - segment instruction 13	FC-13	
ON	ON	ON	OFF	Multi - segment instruction 14	FC-14
ON	ON	ON	Multi - segment instruction 15	FC-15	

When the frequency source is selected as multi-segment speed, 100.0% of the function codes FC - 00 ~ FC 15 correspond to the maximum frequency F0-16. In addition to being a multi-stage speed function, multi-stage instructions can also be used as a given source of PID or as a voltage source for VF separation control, etc. to meet the need of switching between different given values.

Table 2 description of terminal function for acceleration and deceleration time selection

Terminal 2	Terminal 1	Selection of acceleration or deceleration time	Corresponding parameter
OFF	OFF	Acceleration time 1	F0-10, F0-11
OFF	ON	Acceleration time 2	F6-17,F6-18
ON	OFF	Acceleration time 3	F6-19,F6-20
ON	ON	Acceleration time 4	F6-21,F6-22

Attached table 3 motor selection terminal function description

Terminal 2	Terminal 1	Motor selection
OFF	OFF	Motor 1
OFF	ON	Motor 2

F5-10 X input terminal filtering time
 ```0.000s~1.000s [0.010s]```

Set software filtering time for X terminal status. If the input terminal is easily interfered and causes misoperation in use, this parameter can be increased to enhance the anti-interference ability.
However, the increase in the filtering time will cause the response of the X terminal to slow down.

This parameter defines four different ways to control the operation of the frequency inverter through external terminals.

Note: for convenience of explanation, the X1, X2 and X3 terminals among the X1-X7 multifunction input terminals are randomly selected as external terminals. That is, the functions of X1, X2 and X3 terminals are selected by setting the values of F5-00 to F5-02. See the setting range of F5-00 to F5-06 for detailed function definition.

0 : two-wire mode 1: this mode is the most commonly used two-wire mode. The forward and reverse rotation of the motor is determined by terminals x 1 and x 2 .

The function code is set as follows:

Function code	Name	Setting value	Functional description
F5-11	Terminal command mode	0	Two - wire type 1
F5-00	X1 terminal function selection	1	Forward run (FWD)
F5-01	X2 terminal function selection	2	Reverse run (REV)

Figure 5-12 two-wire modes 1

As shown in the above figure, in this control mode, k 1 is closed and the frequency inverter is running forward. K2 closes and reverses, k 1 and k 2 close or open at the same time, and the frequency inverter stops running.
1: two-wire mode 2: with this mode, the $x 1$ terminal function is the operation enable terminal, while the x 2 terminal function determines the direction of operation.
The function code is set as follows:

Function code	Name	Setting value	Functional description
F5-11	Terminal command mode	1	Two - wire type 2
F5-00	X1 terminal function selection	1	Operation enable
F5-01	X2 terminal function selection	2	Positive and negative direction of operation

K 1	K 2	Operating instructions
1	0	Forward
1	1	Reversal
0	1	Stop
0	0	Stop

Figure 5-12 two-wire modes 2
As shown in the above figure, in this control mode, k2 opens the frequency inverter for forward rotation and k2 closes the frequency inverter for reverse rotation in the k 1 closed state. K1 is disconnected and the frequency inverter stops running.

2: Three-wire control mode 1: this mode X3 is an enable terminal, and the directions are controlled by X1 and X2 respectively.
The function code is set as follows:

Function code	Name	Setting value	Functional description
F5-11	Terminal command mode	2	Three wire type 1
F5-00	X1 terminal function selection	1	Forward run (FWD)
F5-01	X2 terminal function selection	2	Reverse run (REV)
F5-02	X3 terminal function selection	3	Three - wire operation control

Figure 5-14 three-wire control modes 1

As shown in the above figure, the control mode is in the closed state of SB1 button, press SB2 button to rotate the frequency inverter forward, press SB3 button to rotate the frequency inverter reversely, and the sb1 button opens and the frequency inverter stops at the moment. During normal start-up and operation, it is necessary to keep the SB1 button closed. The commands of SB2 and SB3 buttons will take effect at the closing action edge and the operating state of the frequency inverter will be subject to the last key action of the three buttons.
$3: 3$ - wire control mode $2: X 3$ in this mode is the enable terminal, the operation command is given by X 1 , and the direction is given by X 1 the status of X 2 is determined.
The function code is set as follows

Function code	Name	Setting value	Functional description
F5-11	Terminal command mode	3	Three wire type 2
F5-00	X1 terminal function selection	1	Operation enable
F5-01	X2 terminal function selection	2	Positive and negative direction of operation
F5-02	X3 terminal function selection	3	Three - wire operation control

K	Direction of movement
0	Forward
1	Reversal

Figure 5-15 three-wire control modes 2

As shown in the figure above, the control mode is under the closed state of SB1 button, press the SB2 button converter to run, K turns off the inverter and K closes the inverter. SB1 button turns off and the frequency inverter stops immediately. During normal start-up and operation, it is necessary to keep the SB1 button closed, and the SB2 button command will take effect at the edge of the closing action.

F5 - 12 terminal UP/DOWN change rate	$0.01 \mathrm{~Hz} / \mathrm{s} \sim 65.535 \mathrm{~Hz} / \mathrm{s}[1.00 \mathrm{~Hz} / \mathrm{s}]$

When setting terminal UP/DOWN to adjust the set frequency, the speed of frequency changes, that is, the amount of frequency change per second.

F5-13 PULSE minimum input	$0.00 \mathrm{kHz} \sim \mathrm{F} 5-15[0.00 \mathrm{HZ}]$
F5-14 PULSE minimum input corresponding settings	$-100.0 \% \sim 100.0 \%[0.00 \mathrm{HZ}]$
F5-15 PULSE maximum input	$\mathrm{F} 5-13 \sim 50.00 \mathrm{KHZ}[50.00 \mathrm{KHZ}]$
F5-16 PULSE maximum input corresponding settings	$-100.0 \% \sim 100.0 \%[100.0 \%]$
F5-17 PULSE filter time	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}[0.01 \mathrm{~s}]$

This set of function codes is used to set the relationship between X 5 pulse frequency and corresponding settings.

The pulse frequency can only be input to the frequency inverter through X5 channel.

F5 - 18 X1 delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}[0.00 \mathrm{~S}]$
F5 - 19 X2 delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}[0.00 \mathrm{~S}]$

F5-20 X3 delay time

$$
0.0 s \sim 3600.0 s \text { [0.00S] }
$$

Used to set the delay time for the change of X terminal state by the frequency inverter at present, only $\mathrm{X} 1, \mathrm{X} 2$, X3 have the function of setting the delay time.

$F 5-21 X$ terminal active mode selection 1	$00000 \sim 11111$ [00000]

Bit: x1 terminal logic set to
0 : positive logic

1. Inverse logic

10 bits: X2 terminal valid state setting ($0 \sim 1$, ditto)
100 bits: X3 terminal valid state setting ($0 \sim 1$, ditto)
1000 bits: X4 terminal valid state setting ($0 \sim 1$, ditto)
10,000 bits: X5 terminal valid state setting ($0 \sim 1$, ditto)
When positive logic is selected, the corresponding X terminal is valid when connected to com, and disconnection is invalid.

If it is selected as anti-logic valid, the corresponding X terminal will not be valid if it is connected to com, and the disconnection will be valid.

F5-22 X terminal active mode selection 2
$00000 ~ 11111$ [00000]

Bit: X6 terminal logic set to 0: positive logic
1: inverse logic
10 bits: $x 7$ terminal active state setting ($0 \sim 1$, same as above)
When positive logic is selected, the corresponding X terminal is valid when connected to com, and disconnection is invalid.

If it is selected as anti-logic valid, the corresponding X terminal will not be valid if it is connected to com, and the disconnection will be valid.

F5-24 Al curve 1 min input	$0.00 \mathrm{~V} \sim \mathrm{~F} 5-26[0.00 \mathrm{~V}]$
F5-25 Al curve 1 minimum input corresponding settings	$-100.0 \% \sim 100.0 \%[0.0 \%]$
F5-26 Al curve 1 maximum input	F5-24 $\sim 10.00 \mathrm{~V}[10.00 \mathrm{~V}]$
F5-27 Al curve 1 maximum input corresponding settings	$-100.0 \% \sim 100.0 \%[100.0 \%]$
F5-28 Al1 filtering time	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}[0.10 \mathrm{~s}]$

The above function code is used to set the relationship between the analog input voltage and the set value it represents.
When the voltage of analog input is greater than the set "maximum input" (F5-26), the analog voltage is calculated according to "maximum input". Similarly, when the analog input voltage is less than the set " minimum input" (F524), it is calculated as the minimum input or 0.0 \% based on the setting of " Al is lower than the minimum input setting selection" (F5-40).
When the analog input is a current input, 1 ma current is equivalent to 0.5 v voltage.
Al1 input filtering time is used to set the software filtering time of Al1. When the analog quantity in the field is easily interfered, please increase the filtering time to stabilize the detected analog quantity. However, the larger the filtering time is, the slower the response speed to the analog quantity detection will be. How to set it needs to be weighed according to the actual application situation

In different applications, the meaning of the nominal value corresponding to 100.0% set by simulation is different. Please refer to the description of each application section for details.

The following illustrations show two typical settings:

Figure 5-16 simulates the correspondence between a given value and a set value

F5-29 AI curve 2 minimum input	$0.00 \mathrm{~V} \sim$ F5-31 $[0.00 \mathrm{~V}]$
F5-30 AI curve 2 minimum input corresponding settings	$-100.0 \% \sim 100.0 \%[0.0 \%]$
F5-31 Al curve 2 maximum input	F5-29 $\sim 10.00 \mathrm{~V}[10.00 \mathrm{~V}]$
F5-32 Al curve 2 maximum input corresponding settings	$-100.0 \% \sim 100.0 \%[100.0 \%]$
F5-33 AI2 filtering time	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}[0.10 \mathrm{~s}]$

For the function and usage of curve 2, please refer to the description of curve 1.

F5-34 Al curve 3 minimum input	$0.00 \mathrm{~V} \sim$ F5-36 $[0.00 \mathrm{~V}]$
F5-35 AI curve 3 minimum input corresponding settings	$-100.0 \% \sim 100.0 \%[0.0 \%]$
F5-36 AI curve 3 maximum input	F5-34 $\sim 10.00 \mathrm{~V}[10.00 \mathrm{~V}]$
F5-37 Al curve 3 maximum input corresponding settings	$-100.0 \% \sim 100.0 \%[100.0 \%]$
F5-38 Al3 filtering time	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}[0.10 \mathrm{~s}]$

For the function and usage of curve 3 , please refer to the description of curve 1 .

F5 - 39 Al curve selection	$111 \sim 555$ [321]

Bit: curve selection corresponding to Al1
1: Curve 1 (2-point curve, see F5-24 ~ F5-27)
2: Curve 2 (2-point curve, see F5-29 ~ F5-32)
3: Curve 3 (2 - point curve, see F5-34~F5-37)
4: Curve 4 (4 - point curve, see F5-41~ F5-48)
5: Curve 5 (4-point curve, see F5-49 ~ F5-56)
10 bits: the curve corresponding to AI2 are selected to be
$1-5$ and are the same as the individual bits.
100 bits: the curves corresponding to Al 3 are selected to be
$1-5$ and are the same as the individual bits.
Notes:
The individual bit, ten bits and hundred bits of the function code are respectively used for selection, and analog input Al1, Al2 and Al3 correspond to the set curves. 3 analog quantity input can select any one of the five curves. Curve 1 , curve 2 , and curve 3 are all 2 - Point curve, while curve 4 and curve 5 are both 4 - point curves.

F5-40 Al is lower than the minimum input setting selection

Bit: Al1 is lower than the minimum input setting selection
0 : corresponds to minimum input settings.
1: 0.0\%
If it is less than the minimum input, 0.0% is considered as input.
10 bits: AI2 is lower than the minimum input setting and the definitions of $0 \sim 1$ is the same as the individual bits.

10 bits: Al3 is lower than the minimum input setting and the definitions of $0 \sim 1$ is the same as the individual bits.

This function code is used for setting, when the voltage of analog quantity input is less than the set "minimum input", how to determine the setting corresponding to analog quantity input.

The individual, ten and hundred bits of the function code correspond to analog quantity inputs Al1, Al2 and Al3, respectively.

If 0 is selected, when the Al input is lower than the "minimum input", the corresponding setting of the analog quantity is the function code.

Determined curve "minimum input corresponding settings" (F5-25, F5-30, F5-35). If 1 is selected, when the Al input is lower than the minimum input, the corresponding setting of the analog quantity is 0.0%.

F5-41 Al curve 4 minimum input	0.00V ~F5-43 [0.00V]
F5-42 Al curve 4 minimum input corresponding settings	-100.0\% ~ 100.0\% [0.0\%]
F5-43 Al curve 4 inflection point 1 input	F5-41~F5-45V [3.00V]
F5-44 AI curve 4 inflection point 1 input corresponding settings	-100.0\%~100.0\% [30.0\%]
F5-45 Al curve 4 inflection point 2 input	F5-43 ~F5-47 [6.00V]
F5-46 AI curve 4 inflection point 2 input corresponding settings	-100.0\%~100.0\% [60.0\%]
F5-47 Al curve 4 maximum input	F5-29~10.00V [10.00V]
F5-48 Al curve 4 maximum input corresponding settings	-100.0\% $\sim 100.0 \%$ [100.0\%]
F5-49 Al curve 5 min input	0.00V \sim F5-51 [0.00V]
F5-50 Al curve 5 minimum input corresponding settings	-100.0\% $\sim 100.0 \%$ [0.0\%]
F5-51 Al curve 5 inflection point 1 input	F5-49 ~F5-53V [3.00V]
F5-52 Al curve 5 inflection point 1 input corresponding settings	-100.0\% ~ 100.0\% [30.0\%]
F5-53 AI curve 5 inflection point 2 input	F5-51~F5-55 [6.00V]

F5-54 Al curve 5 inflection point 2 input corresponding settings	$-100.0 \% \sim 100.0 \%[60.0 \%]$
F5-55 Al curve 5 maximum input	F5-53~10.00V [10.00V]
F5-56 Al curve 5 maximum input corresponding settings	$-100.0 \% \sim 100.0 \%[100.0 \%]$

The functions of curve 4 and curve 5 are similar to those of curve 1 to curve 3 , but curve 1 to curve 3 are 2 - point straight lines, while curve 4 and curve 5 are 4 - point curves, which can realize more flexible correspondence. Figs. 5 - 17 are schematic diagrams of curves 4 to 5 , taking curve 4 as an example.

Figure 5-17 schematic diagram of 4 - point curve
Notes:
When setting curve 4 and curve 5 , you should pay attention to the following conditions: minimum input voltage of curve < inflection point 1 voltage < Inflection point 2 voltage < maximum voltage

F5-65 Al1 sets jumping point	$-100.0 \% \sim 100.0 \%[0.0 \%]$
F5-66 Al1 sets jump amplitude	$0.0 \%-100.0 \%[0.5 \%]$
F5-67 Al2 sets jumping point	$-100.0 \% \sim 100.0 \%[0.0 \%]$
F5-68 Al2 sets jump amplitude	$0.0 \%-100.0 \%[0.5 \%]$

F5-69 Al3 sets jumping point	$-100.0 \% \sim 100.0 \%[0.0 \%]$
F5-70 Al3 sets jump amplitude	$0.0 \%-100.0 \%[0.5 \%]$

Analog quantity inputs Al1 to AI3 have the function of setting value jump. The skip function refers to setting the analog quantity corresponding to changes in the upper and lower sections of the skip point.

The value is fixed to the value of the jumping point.
Example:
The voltage of analog quantity input Al1 fluctuates up and down 5.00 V , ranging from 4.90 V to 5.10 V . the minimum input 0.00 V of Al1 corresponds to 0.0% and the maximum input 10.00 V corresponds to $100 . \%$. And then the detected Al1 corresponds to a fluctuation of $49.0 \% \sim 51.0 \%$

Setting Al1 set jumping point F5 - 65 to 50.0% and setting Al1 set jumping amplitude F5-66 to 1.0%, the corresponding setting of the obtained Al1 input after the jump function processing is fixed to $50.0 \%, \mathrm{Al} 1$ is converted into a stable input and the fluctuation is eliminated.

F6 Group start-stop control

F6 - 00 starting operation mode	$0 \sim 2[0]$

0: direct starting
If the starting DC braking time is set to 0 , the frequency inverter will start operating from the starting frequency.
If the starting DC braking time is not 0 , DC braking will be performed first, and then operation will start from the starting frequency. Suitable for small inertia load, where the motor may rotate during start - up

1: speed tracking and restarting
The frequency inverter first judges the speed and direction of the motor, then starts at the tracked frequency of the motor, and during rotation the motor starts smoothly and without impact. It is suitable for the restart of large inertia load with instantaneous power failure. In order to ensure the performance of speed tracking and restart, it is necessary to accurately set the f 1 parameters of the motor.

2: The pre-excitation starting of the asynchronous machine
Is only valid for the asynchronous motor, which is used to establish the magnetic field before the motor runs.
Refer to the description of function codes F6-05 and F6-06 for pre-excitation current and pre-excitation time.
If the pre-excitation time is set to 0 , the frequency inverter cancels the pre-excitation process and starts from the starting frequency. If the pre-excitation time is not 0 , the motor can be pre-excited before starting, which can improve the dynamic response performance of the motor.

F6-01 speed tracking method
$0 \sim 2$ [0]

In order to complete the speed tracking process in the shortest time, select the way that the frequency inverter tracks the motor speed:

0 : starting from shutdown frequency
This method is usually used to track down from the frequency of power failure.
1: starting from zero speed
Track up from zero frequency, and use it in case of power failure for a long time before starting.
2: starting from the maximum frequency
Track down from the maximum frequency and use the general power generating load.

```
F6 - 02 rotational speed tracking speed 
```

When speed tracking is restarted, select the speed of speed tracking.
The larger the parameter, the faster the tracking speed However, setting too large may lead to unreliable tracking results.

F6 - 03 startup frequency	$0.00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}[0.00 \mathrm{~Hz}]$
F6 - 04 startup frequency hold time	$0.0 \mathrm{~s} \sim 100 \mathrm{~s}[0.0 \mathrm{~s}]$

In order to ensure the motor torque during starting, please set the appropriate starting frequency. In order to fully establish magnetic flux when starting the motor, it is necessary to keep the starting frequency for a certain period of time.

The relationship between starting frequency and starting time is shown in figure 5-18.

Figure 5-18 startup frequency and startup time

Notes:

The starting frequency F6-03 is not limited by the lower limit frequency.
When the set target frequency is less than the starting frequency, and the frequency inverter will not start and will be in standby mode.

During forward and reverse switching, the start frequency holding time does not work.
The startup frequency holding time is not included in the acceleration time, but is included in the operation time of the simple PLC.

F6-05 start DC brake current / pre-excitation current	$0 \% \sim 100 \%[0 \%]$
F6-06 start DC brake time / pre - excitation time	$0.0 \mathrm{~s} \sim 100.0 \mathrm{~s}[0.0 \mathrm{~s}]$

Start the direct current brake, which is usually used to stop the running motor before starting. The pre-excitation is used to set up a magnetic field before starting the asynchronous motor to improve the response speed.

If it is valid when the startup mode is direct startup at this time, the frequency inverter performs direct current braking according to the set starting direct current braking current, and starts to run after the starting direct current braking time. If the DC braking time is set to 0 , it will be started directly without direct current braking.

If the starting mode is asynchronous machine pre-excitation starting, the frequency inverter first establishes a magnetic field in advance according to the set pre-excitation current, and then starts to run after the set pre-excitation time. If the pre-excitation time is set to 0 , it will be started directly without going through the pre-excitation process.

F6-07 stop DC brake starting frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency [0.00 Hz]
F6-08 stop DC brake waiting time	$0.0 \mathrm{~s} \sim 36.0 \mathrm{~s}[0.0 \mathrm{~s}]$
F6-09 stop DC brake current	$0 \% \sim 100 \%[0 \%]$
F6-10 stop DC braking time	$0.0 \mathrm{~s} \sim 36.0 \mathrm{~s}[0.0 \mathrm{~s}]$

Stop DC brake starting frequency: during deceleration and stop, when the operating frequency drops to this frequency, the DC brake process starts.

Stop DC brake waiting time: after the operating frequency is reduced to the stop DC brake starting frequency, the frequency inverter stops output for a period of time before starting the DC brake process. It is used to prevent over-current and other faults that may be caused by starting DC braking at higher speeds

Figure 5-19 schematic diagram of DC braking

F6 - 11 brake usage	$0 \% \sim 100 \%$ [100\%]

Valid only for frequency inverter with built-in brake unit
It is used to adjust the duty ratio of the moving unit and if the brake usage rate is high, the duty ratio of the brake unit is high and the brake effect is strong, but the inverter bus voltage fluctuates greatly during braking.

Notes:
The setting of this function code should take into account the resistance and power of the braking resistor.

F6-13 JOG frequency	$0.00 \mathrm{~Hz} \sim$ maximum frequency [2.00 Hz]
F6-14 JOG acceleration time	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}[20.0 \mathrm{~s}]$
F6-15 JOG deceleration time	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}[20.0 \mathrm{~s}]$

The given frequency and acceleration / deceleration time of the frequency inverter during define JOG.
During JOG operation, the starting mode is fixed as direct starting mode and the stopping mode is fixed as deceleration stopping mode.

F6 -16 terminal JOG takes precedence	$0 \sim 1[0]$

This parameter is used to set whether the terminal jog function has the highest priority.
When the terminal JOG takes precedence, if the terminal JOG command appears during operation, the frequency inverter will switch to the terminal point running status

F6 -17 acceleration time 2	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~S}$ [model determination]
F6 -18 deceleration time 2	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~S}$ [model determination]
F6 -19 acceleration time 3	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~S}$ [model determination]
F6 - 20 deceleration time 3	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~S}[$ model determination]
F6 - 21 acceleration time 4	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~S}[$ model determination]
F6 -22 deceleration time 4	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~S}[$ model determination]

HV480 has 4 groups of acceleration and deceleration times, which are F0-10 \F0-11 and the above 3 groups of acceleration and deceleration times respectively.

The definitions of the four groups of acceleration and deceleration times are exactly the same, please refer to F0 - 10 and F0-11 related instructions.

Through different combinations of multifunctional digital input terminals x , four groups of acceleration and deceleration times can be switched and selected, and the specific user can please refer to the relevant instructions in function codes F5-01~F5-05 for the method.

F6 -23 acceleration and deceleration mode	$0 \sim 1[0]$

Select the frequency change mode of the frequency inverter during start-up and stop - up.
0 : the output frequency of linear acceleration and deceleration Increases or decreases linearly according to a constant slope.

Figure 5-20 linear acceleration and deceleration
1: S curve acceleration and deceleration
The output frequency increases or decreases according to the S curve. The S curve is used in places that require gentle start-up or shutdown, such as electric ladders and conveyor belts. The function codes F6-24 and F625 define the time ratios of the start and end segments of the S - curve acceleration and deceleration respectively.

Figure 5-21 S curve acceleration and deceleration

F6 - 24 S curve start period time proportion	$0 \% \sim 0.0 \% \sim(100.0 \%-$ F6-25 $[30 \%]$
F6-25 S curve end period time proportion	$0 \% \sim 0.0 \% \sim(100.0 \%-\mathrm{F} 6-26)[30 \%]$

The function codes F6-24 and F6-25 respectively define the time ratio between the start and end periods of the S curve acceleration and deceleration A and the two function codes shall meet the following requirements: F6-24 + F6-25 $\leq 100.0 \%$

F6-26 acceleration time 1 and acceleration time 2 switch frequency points
F6-27 deceleration time 1 and deceleration time 2 switch frequency points
$0.00 \mathrm{~Hz} \sim$ maximum frequency [0.00hz]
$0.00 \mathrm{~Hz} \sim$ maximum frequency [0.00hz]

During acceleration, if the operating frequency is less than F6-26, the acceleration time 2 is selected; if the operating frequency is greater than F6-26, select acceleration time 1 .

During deceleration, select deceleration time 1 if the operating frequency is greater than F6-27, and select deceleration time 1 if the operating frequency is less than F6-27 and the deceleration time 2 is selected.

F7 Group torque control

```
F7-00 speed / torque control mode 0~1 [0]
```

0 : speed control mode.
1: torque control mode.
Notes:
The torque control mode is only valid in vector mode and VF control mode is invalid.
The X terminal has two functions related to torque control: torque control inhibits (function 29) and speed control / torque control switch (function 46). These two terminals should be used in conjunction with F7-00 to switch speed and torque control.

F7-01 torque setting selection under torque control mode	$0 \sim 7[0]$

F7-01 is used to select the torque setting source. There are 8 torque setting methods.
Torque setting uses relative value, 100.0% corresponding to the rated torque of the motor. Setting range 200.0 \% ~ 200.0 \%, table the maximum torque of the Ming frequency inverter is twice the rated torque of the frequency inverter.

When the torque is given to be positive, the frequency inverter is running in forward rotation
When the torque is given to be negative, the frequency inverter is running in reverse rotation
0 : digital setting (F7-03)
Means that the target torque directly uses the F7-03 setting value.
1: Al1
2: Al2
3: Al3
Refers to the target torque is determined by the analog input terminal.
Al is given as torque, the voltage / current input corresponds to 100.0% set, which refers to the percentage of F7-03 set with respect to the torque number.

4. PULSE pulse (X5)

Target torque is given through terminal X 5 high speed pulse.
Pulse given signal specification: voltage range $9 \mathrm{~V} \sim 30 \mathrm{~V}$, frequency range $0 \mathrm{kHz} \sim 100 \mathrm{kHz}$. Pulse given can only be input from the multi-function input terminal X 5 .

The setting of 100.0 \% corresponding to X5 terminal pulse input refers to the percentage of F7-03 set with respect to the torque figure.

5. Communication given

Refers to the target torque is given by means of communication.
The host computer gives the data through the communication address 0×1000, and the data format is $100.00 \%-100.00 \% .100 .00 \%$ refers to the percentage set by F7-03 with respect to the torque figure.

F7-02 small torque stop compensation

$-50.0 \% \sim 50.0 \%$ [0.0\%]
During torque control, the setting torque is too small to stop the traction load. At this time, F7-02 is added, and the setting goes bigger, and the greater the torque during shutdown (note: not deceleration).

```
F7-04 torque control speed limit source

0: set speed limit by F7-05 and F7-06.
When the torque setting is greater than 0 , the upper frequency limit is given by \(\mathrm{F} 7-05\); When the torque setting is less than 0 , the upper frequency limit is set by F7-06.

1: set by frequency source F0-03 frequency source.
When the torque is set to be 0 , the upper frequency limit is determined by the frequency selected by F0-03. When the torque is set to be 0 , the upper frequency limit is F0-03 negative number of selected frequency.
\begin{tabular}{|l|l|}
\hline F7-05Torque control forward maximum frequency & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([50.00 \mathrm{hz}]\) \\
\hline F7-06Torque control reverse maximum frequency & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([50.00 \mathrm{hz}]\) \\
\hline
\end{tabular}

During torque control, the acceleration / deceleration time of the upper frequency limit is set at F7-09 (acceleration) / F7-10 (deceleration).

Used to set the maximum forward or reverse operating frequency of the frequency inverter in torque control mode.

When the frequency inverter torque is controlled, if the load torque is less than the motor output torque, the motor speed will continuously increase. In order to prevent accidents such as speeding in mechanical systems, it is necessary to limit the maximum rotational speed of the motor during torque control.

If it is necessary to dynamically and continuously change the maximum frequency of torque control, the upper limit frequency can be controlled.
\begin{tabular}{|l|l|}
\hline F7-07 Torque given rise time & \(0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}[0.00 \mathrm{~s}]\) \\
\hline F7-08 Given torque drop time & \(0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}[0.00 \mathrm{~s}]\) \\
\hline
\end{tabular}

Under the torque control mode, the difference between the motor output torque and the load torque determines the speed change rate of the motor and the load. Therefore, the speed of the motor may change rapidly, which will cause problems such as noise or excessive mechanical stress. By setting the torque control acceleration and deceleration time, the rotation speed of the motor can be changed smoothly.

However, when torque is required to respond quickly, torque control acceleration and deceleration time should be set to 0.00 s .
\begin{tabular}{|l|l|}
\hline F7-09 Torque control frequency rise time & \(0.00 \mathrm{~s} \sim 6500.00 \mathrm{~s}[20.00 \mathrm{~s}]\) \\
\hline F7-10 Torque control frequency drop time & \(0.00 \mathrm{~s} \sim 6500.00 \mathrm{~s}[20.00 \mathrm{~s}]\) \\
\hline
\end{tabular}

\section*{F8 Group auxiliary function}
```

F8 - 00 cumulative power-on arrival time setting Oh~65000h [0h]

```

When the accumulated power-on time (U0-71) reaches the power-on time set by F8-00, the frequency inverter multifunction (No. 24) digital DO outputs the on signal.
F8 - 01 cumulative run arrival time setting

When the accumulated operating time \((\mathrm{UO}-70)\) reaches this set operating time, the digital DO of the frequency inverter multifunction (No. 12) outputs the on signal.

Note: when modifying this function code, the motor group parameters will change accordingly.
\begin{tabular}{l|l|}
\hline F8 - 04 timing function selection & \(0 \sim 1[0]\) \\
\hline
\end{tabular}

0 : invalid
1: valid
F8-05 timing run time selection
\[
0 \sim 3[0]
\]

0: set by F8-06
1: set by Al1 ( \(100 \%\) analog input range corresponds to F8 - 06)
2: Al2 setting (100 \% analog input range corresponds to F8-06)
3: Al3 setting ( \(100 \%\) analog input range corresponds to F8-06)
F8-02 = 4, the frequency inverter starts timing when it starts. After reaching the set timing running time, the frequency inverter stops automatically and the multi-function DO outputs an on signal at the same time.

Each time the frequency inverter starts, it starts counting from 0 . The remaining running time of timing can be checked through u0-20.

The timing run time is set by F8-05 / F8-06 and the time unit is min.
\begin{tabular}{|l|l|}
\hline F8-06 timing run time & \(0.0 \mathrm{Min} \sim 6500.0 \mathrm{Min}[0.0 \mathrm{Min}]\) \\
\hline F8-07 arrival time setting for this run & \(0.0 \mathrm{Min} \sim 6500.0 \mathrm{Min}[0.0 \mathrm{Min}]\) \\
\hline
\end{tabular}

When the running time of this startup reaches this time, the multi-function digital DO of the frequency inverter outputs an on signal of "the running time reaches this time".
\begin{tabular}{|l|l|}
\hline F8 - 08 skip frequency 1 & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([0.00 \mathrm{~Hz}]\) \\
\hline F8-09 skip frequency 2 & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([0.00 \mathrm{~Hz}]\) \\
\hline F8-10 skip frequency 3 & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([0.00 \mathrm{~Hz}]\) \\
\hline F8-11 skip frequency 4 & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([0.00 \mathrm{~Hz}]\) \\
\hline F8-12 jump frequency amplitude & \(0.00 \mathrm{~Hz} \sim\) maximum frequency \([0.00 \mathrm{~Hz}]\) \\
\hline
\end{tabular}

F8-08~F8-12 are designed for the output frequency of the frequency inverter to avoid the resonance point of the mechanical load.

When the set frequency is within the jump frequency range, the actual operating frequency will run in the jump closer to the set frequency. By setting the jumping frequency, the frequency inverter can avoid the mechanical resonance point of the load.

HV480 can set 4 hopping frequency points. If all 4 hopping frequencies are set to 0 , the hopping frequency function will be cancelled.

The conditions that must be met: The principle of hopping frequency \(1<=\) hopping frequency \(2<=\) hopping frequency 3 < = hopping frequency 4

Hopping frequency and hopping frequency amplitude is illustrated herein with, please refer to figure 5-22.


Figure 5-22 Hopping frequency diagram
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
F8-13 is the Hopping frequency valid during \\
acceleration and deceleration
\end{tabular} & \(0 \sim 1[0]\) \\
\hline
\end{tabular}

This function code is used to set whether the skip frequency is valid during acceleration and deceleration.
F8-13 = 1, when the operating frequency is in the hopping frequency range, the actual operating frequency will skip the set hopping frequency boundary. Figure 5-23 is a schematic diagram showing the valid jumping frequency during acceleration and deceleration.


Figure 5-23 valid diagram of jumping frequency during acceleration and deceleration
\begin{tabular}{|l|l|}
\hline F8-14 wakeup frequency & \begin{tabular}{l} 
Sleep frequency (F8-16 ) - maximum frequency ( F0 - \\
\(10)[0.00 \mathrm{HZ}]\)
\end{tabular} \\
\hline F8-15 wake - up and delay time & \(0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}[0.0 \mathrm{~S}]\) \\
\hline F8-16 sleep frequency & \(0.00 \mathrm{~Hz} \sim\) wakeup frequency ( F8-14 ) [0.00 Hz ] \\
\hline F8-17 sleep delay time & \(0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}[0.0 \mathrm{~S}]\) \\
\hline
\end{tabular}

This set of parameters is used to realize sleep and wake-up functions in water supply applications.
During the operation of the frequency inverter, when the set frequency is less than or equal to the F8-16 sleep frequency, the F8-17 delay time passes After that, the frequency inverter goes to sleep and stops automatically.

If the frequency inverter is in sleep state and the current operation command is valid, when the set frequency is greater than or equal to F8-14 wake up Frequency, after a delay of time F8-15, the frequency inverter starts to start.

In general, please set the wakeup frequency to be greater than or equal to the sleep frequency. Set the wake-up frequency and sleep frequency to both 0.00 Hz , sleep and wake-up functions are invalid.

When the sleep function is enabled, if the frequency source uses PID, whether the sleep state PID is operated is determined by the function code FA - 28, at this time must choose PID downtime calculation (FA - \(28=1\) ).

Note: during sleep, the running LED on the control panel blinks for 1 s
\begin{tabular}{l|l} 
F8 - 18 output power correction factor & \(0.0 \% \sim 200.0 \%[100.0 \%]\)
\end{tabular}
When the output power ( \(\mathbf{u} 0-05\) ) does not correspond to the expected value, the output power can be linearly corrected through this value.
F8-19 instantaneous power failure action selection \(\quad 0 \sim 2\) [0]
In the event of an instantaneous power failure or a sudden drop in voltage, the frequency inverter compensates for the drop in DC bus voltage of the frequency inverter by reducing the output speed, so as to maintain the frequency inverter's continuous operation.

0 : this function is invalid.
1: slow down.
When the power is cut off or the voltage drops suddenly, the frequency inverter slows down. When the bus voltage returns to normal, the frequency inverter is normal. Speed up recovery to set frequency operation. The basis for judging the bus voltage to return to normal is that the bus voltage is normal and the duration exceeds the set time of F8-21.

2: slow down and shut down.
In the event of an instantaneous power failure or a sudden drop in voltage, the frequency inverter slows down until it stops.
\begin{tabular}{|l|l|}
\hline F8-20 momentary stop action pauses judgment voltage & \(80.0 \% \sim 100.0 \%\) [90.0\%] \\
\hline \begin{tabular}{l} 
F8-21 judging time of instantaneous power failure \\
voltage rebound
\end{tabular} & \(0.00 \mathrm{~s} \sim 100.00 \mathrm{~s}[0.50 \mathrm{~s}]\) \\
\hline \begin{tabular}{l} 
F8-22 instantaneous power failure action judgment \\
voltage
\end{tabular} & \(60.0 \% \sim 100.0 \%\) (standard bus voltage ) [ \(80.0 \%\) ] \\
\hline
\end{tabular}

F8-23 ~ F8-32 are specially designed for the textile industry. They are used in textile, chemical fiber and other industries, as well as in occasions where horizontal movement and winding functions are required. They are simply referred to as swing frequency functions.

The pendulum frequency function is applicable to the pendulum frequency function. It refers to the frequency output by the frequency inverter, which swings up and down around the set frequency. The track of the operating frequency on the time axis is shown in figure 5-24. The swing amplitude is set by F8-23 and F8-24. When F8-24 is set to 0 , the pendulum frequency will not work at this time.


Figure 5-24 schematic diagram of swing frequency operation

This parameter is used to determine the reference amount of the swing.
0 : relative center frequency (current frequency source), variable swing system. The swing amplitude changes with the change of the center frequency (set frequency).

1: the relative maximum frequency (F0-16) is a fixed swing system, and the swing is fixed.
\begin{tabular}{|l|l|}
\hline F8 - 24 swing amplitude & \(0.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline F8 - 25 sudden jump frequency amplitude & \(0.0 \% \sim 50.0 \%[0.0 \%]\) \\
\hline
\end{tabular}

This parameter is used to determine the values of swing amplitude and sudden jump frequency.
When setting the swing relative to the center frequency (F8-23 = 0), swing aw \(=\) setting frequency \(\times\) swing amplitude F8-24.

When setting the swing relative to the maximum frequency (F8-23 = 1), the swing aw = maximum frequency F0 - \(16 \times\) swing amplitude F8-24.

The sudden jump frequency amplitude is the percentage of the sudden jump frequency relative to the swing amplitude when the swing frequency is running, i.e. sudden adjustment frequency \(=\) swing amplitude aw \(\times\) sudden jump frequency amplitude F8-25.

If the swing amplitude is selected relative to the center frequency ( \(F 8-23=0\) ), the sudden adjustment frequency is a change value.

If the swing amplitude is selected relative to the maximum frequency ( \(F 8-23=1\) ), the sudden adjustment frequency is a fixed value.

The frequency of swing frequency operation is limited by the upper limit frequency and the lower limit frequency.
\begin{tabular}{|l|l|}
\hline F8 - 26 frequency swing period & \(0.0 \mathrm{~s} \sim 3000.0 \mathrm{~s}[10.0 \mathrm{~s}]\) \\
\hline F8-27 triangular wave rise time coefficient & \(0.0 \% \sim 100.0 \%[50.0 \%]\) \\
\hline
\end{tabular}

Frequency swing period: the time value of a complete frequency swing period.
The triangular wave rise time coefficient F8-27 is the percentage of the triangular wave rise time relative to the wobble period F8-26.

Triangular wave rise time \(=\) frequency swing period F8-26 \(\times\) triangular wave rise time coefficient F8-27 in seconds.

Triangle wave falling time \(=\) swing frequency period F8-26×(1-triangle wave rising time coefficient F8-27), in seconds.
\begin{tabular}{|l|l|}
\hline F8-28 set length & \(0 \mathrm{~m} \sim 65535 \mathrm{~m}[1000 \mathrm{~m}]\) \\
\hline F8-29 actual length & \(0 \mathrm{~m} \sim 65535 \mathrm{~m}[0 \mathrm{~m}]\) \\
\hline F8-30 number of pulses per meter & \(0.1 \sim 6553.5[100.0]\) \\
\hline
\end{tabular}

The above function code is used for fixed length control.
Length information needs to be collected through a multifunctional digital input terminal, and the number of pulses sampled by the terminal and the number of pulses per meter The actual length F8-29 can be calculated by dividing F8-30.

During the fixed length control process, the length reset operation can be performed through the multi-function \(X\) terminal (the X terminal function is selected as follows 28), please refer to F5-00~F5-06 for details.

The corresponding input terminal function needs to be set to "length count input" (function 27) in the application. In the pulse frequency X 5 port must be used when it is high.
\begin{tabular}{|l|l|}
\hline F8 -31 set count value & \(1 \sim 65535\) [1000] \\
\hline F8 - 32 specifies the count value & \(1 \sim 65535[1000]\) \\
\hline
\end{tabular}

The count value needs to be collected through the multifunctional digital input terminal. The corresponding input terminal function needs to be set to "counter input" (function 25) in the application. When the pulse frequency is high, X5 port must be used.

When the count value reaches the set count value F8-31, the multifunction digital DO outputs the "set count value reaches" ON signal, and then the counter stops counting

When the count value reaches the specified count value F8-32, the multifunction digital DO outputs the "specified count value reaches" ON signal. At this time, the counter continues counting until "set count value" when the counter stops.

The specified count value F8-32 should not be greater than the set count value F8-31. The count value can be viewed in u0-12.

\section*{F9 Group failure and protection}
\begin{tabular}{|l|l|}
\hline F9 - 00 motor overload protection selection & \(0 \sim 1[1]\) \\
\hline F9-01 motor overload protection gain & \(0.20 \sim 10.00[1.00]\) \\
\hline
\end{tabular}

F9-00 \(=0\) : motor overload protection is invalid.
F9-00 \(=1\) : at this time, the frequency inverter judges whether the motor is overloaded according to the inverse time limit curve of the motor overload protection.

The shortest time to report motor overload is 2 minutes. If you need to adjust motor overload current and time, please Set F9-01 (motor overload protection gain). The curve of motor overload current and overload time is shown in the following figure:


Figure 5-25 overload current vs. overload time curve
For example: if the motor is required to run at \(120 \%\) of the motor current for 30 minutes to report overload, the default setting will be calculated first motor current IX overloaded for 30 minutes.

According to the motor overload graph, if the 30 - minute overload is within the current range of \(125 \%\) and \(135 \%\), then it can be concluded that the 30 - minute overload motor current IX under the default setting is as follows:
\[
(40-30) \div(125 \%-\mathrm{Ix})=(40-15) \div(125 \%-135 \%)
\]

The result shows that the motor current \(\mathrm{Ix}=129 \%\), so it can be concluded that the motor needs to overload for 30 minutes at \(120 \%\) of the motor current, and the motor overload protection gain:
\[
\mathrm{F} 9-01=120 \% \div \mathrm{I}=120 \% \div 129 \%=0.93
\]

Note: the user needs to set the value of F9-01 correctly according to the actual overload capacity of the motor. If the parameter setting is too large, it is likely to cause overheating damage to the motor and the frequency inverter does not give an alarm in time to protect it!

\section*{F9-02 motor overload warning coefficient \(\quad 50 \% \sim 100 \%\) [80\%]}

This function is used to give an early warning signal to the control system through do before motor overload fault protection. This early warning coefficient is used to determine how much early warning is to be given before motor overload protection. The higher the value, the smaller the advance warning amount

When the frequency inverter output current accumulation is greater than the product of the overload inverse time limit curve and F9 - 02, the multi-function digital word DO of the frequency inverter outputs the "motor overload pre-alarm" on signal
\begin{tabular}{|l|l|}
\hline F9 - 03 Over voltage stall gain & \(0 \sim 100[0]\) \\
\hline F9 - 04 stall over voltage point & \(120 \% \sim 150 \%[130 \%]\) \\
\hline
\end{tabular}

F9-03 = 0: Over voltage stall protection function is invalid.
F9-03 non - 0: Over voltage stall protection function is valid.
During the speed reduction of the frequency inverter, due to the influence of the load inertia, the actual decrease of the motor speed may be lower than the decrease rate of the output frequency. At this time, the motor will feed back electric energy to the frequency inverter, causing the voltage of the DC bus of the frequency inverter to rise. If no measures are taken, an Over voltage fault will occur.

The over-voltage stall protection function detects the bus voltage during the deceleration operation of the frequency inverter, and compares it with the F9-04*534 v stall Over voltage point. If the stall voltage is exceeded, the frequency output of the frequency inverter stops falling. When the bus voltage is lower than the stall Over voltage point, the deceleration operation will be implemented again.

F9-03 the greater the Over voltage stall gain setting, the stronger the ability to suppress Over voltage. However on the premise that no over voltage occurs, the smaller the benefit increase setting is, the better.

For loads with small inertia, the over-pressure stall gain should be small; otherwise the system's dynamic response will slow down.

For large inertia loads, this value should be large; otherwise, the suppression effect is not good and Over voltage faults may occur.


Figure 5-26 Over voltage stall function
\begin{tabular}{|l|l|}
\hline F9 - 05 over loss rate gain & \(0 \sim 100\) [20] \\
\hline F9-06 stall flow point & \(100 \% \sim 200 \%\) [150\%] \\
\hline
\end{tabular}

Over current speed: when the frequency inverter output current reaches the set over current stall protection current (F9-06), the frequency inverter will reduce the output frequency when accelerating operation; Reduce the output frequency during constant speed operation; During deceleration operation, the speed of descent is slowed down until the current is less than the over current stall protection current (F9-06) before the operating frequency returns to normal.

Over current stall protection current: select the current protection point with over current speed function. The frequency inverter starts to perform over-current stall protection function beyond this parameter value. This value is the percentage of the rated current of the motor.

Over - loss speed gain: used to adjust the frequency inverter's ability to suppress over-current during acceleration and deceleration. The greater the value, the stronger the ability to suppress over current on the premise of no over current, and the smaller the gain setting, the better.

For loads with small inertia, the over-loss rate gain should be small; otherwise the system's dynamic response will slow down.

For loads with large inertia, this value should be large; otherwise, the suppression effect is not good and over current faults may occur.

When the inertia is very small, it is recommended to set the over current suppression gain to less than 20. The over-run speed gain is set to 0 , the over-run speed function will be cancelled.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
F9 - 07 \\
on selection of shound circuit protection from power
\end{tabular} & \(0 \sim 1[1]\) \\
\hline
\end{tabular}

0: power-on short circuit test to ground is invalid.
1: power-on short circuit detection to ground is valid.
This function is valid, and then the uvw end of the frequency inverter will have a voltage output for a period of time after power - up, which will last for 500 Ms .
```

F9-09 number of automatic resets for faults 0~20 [0]

```

The automatic fault reset function can automatically reset faults in operation according to the set number of times and interval F9-11. When the number of automatic resets is set to 0 , automatic resets are prohibited and fault protection is performed immediately.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
F9 - 10 fault DO action selection during automatic fault \\
reset
\end{tabular} & \(0 \sim 1\) [0] \\
\hline
\end{tabular}

0 : during the fault, the fault DO does not output
1: fault DO output during fault.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
F9 - 11 fault DO action selection during automatic fault \\
reset
\end{tabular} & \(0.1 \mathrm{~s} \sim 100.0 \mathrm{~s}[1.0 \mathrm{~s}]\) \\
\hline \begin{tabular}{l} 
F9 -12 input phase missing \(\backslash\) contactor suction protection \\
selection
\end{tabular} & \(00 \sim 11[11]\) \\
\hline
\end{tabular}

Bit: input phase missing protection
0 : input phase missing does not fail.
1: the panel displays IPL if the input is out of phase.
10 bits: contactor suction protection
0 : contactor failure when not suction.
1: failure when contactor does not suck, panel shows ref

\section*{F9-13 selection of out-of-phase protection for output \(\quad 0 \sim 1\) [1]}

0 : no fault protection when the output is out of phase.
1: when the output is out of phase, fault protection and OPL are displayed on the panel.
```

F9-14 fault protection action selection 1 00000~22222 [00000]

```

Bits: motor overload fault OL2
10 bits: input phase failure IPL.
100 bits: output phase-missing fault OPL.
1000 bits: external failure ETF.
10,000 bits: communication failure COF.
0 : free parking. Once OL2 fails, stop the parking freely.
1: stop the machine according to the set stop method.
2: continue running.
F9-15 fault protection action selection \(2 \quad 00000 \sim 22222\) [00000]

Bit:
10 bits: EEPROM fault EPF.
100 bits: reserved.
1000 bits: reserved.
10,000 bits: accumulated time reaches RTAF.
0 : free parking.
1: stop the machine according to the set stop method.
2: continue running.
F9-16 fault protection action selection \(3 \quad 00000 \sim 22222\) [00000]

Bit: custom fault uEF1.
10 bits: user-defined fault uEF2.
100 bits: power-on time reaches faulty utF.
1000 bits: load shedding fault Llf.
10,000 bits: PID feedback lost fault PIDF.
0 : free parking.
1: stop the machine according to the set stop method.
2: continue running.
F9-17 fault protection action selection \(4 \quad 00000 \sim 22222\) [00000]
Bit: failure DEU due to excessive speed deviation.
10 digits: motor over speed OSF.
100 bits: initial position error POF.
1000 bits: load shedding fault LLF.
10,000 bits: reserved.
0 : free parking.
1: stop the machine according to the set stop method.
2: continue running.
F9-21 continue operating frequency selection in case of failure
```

0~4 [0]

```

0 : run at current operating frequency
1: run at the set frequency
2: run at the upper limit frequency
3: the following limited frequency operation
4: run at abnormal standby frequency.
If a fault occurs during the operation of the frequency inverter, and the processing method of the fault is set to continue running, F9-21 will be used for confirmation run at a fixed frequency.

When selecting an abnormal standby frequency to run, the value set by F9-22 is a percentage of the maximum frequency.
\begin{tabular}{|l|l|}
\hline F9 - 22 abnormal standby frequency & \(0.0 \%-100.0 \%\) ( maximum frequency ) [ \(100.0 \%\) ] \\
\hline F9-23 motor sensor type & \(0 \sim 2[0]\) \\
\hline
\end{tabular}

0 : no temperature sensor.
1:PT100.
2:PT1000.
\begin{tabular}{l|l}
\hline F9-24 motor overheating threshold & \(0^{\circ} \mathrm{C} \sim 200^{\circ} \mathrm{C}\) [110] \\
\hline
\end{tabular}

F9-25 motor overheating warning threshold
\(0^{\circ} \mathrm{C} \sim 200^{\circ} \mathrm{C}\) [90]
The sensor type must be set correctly for using, and the motor temperature value is displayed in U0-34.
When the motor temperature ( \(\mathrm{U} 0-34\) ) exceeds the motor overheat protection threshold F9-24, the frequency inverter fails to give an alarm.

When the motor temperature ( \(u 0-34\) ) exceeds the motor overheat warning threshold, the multi-function digital output "motor overheat warning" of the frequency inverter will output a signal.
\begin{tabular}{|l|l|}
\hline F9-26 off-load protection options & \(0 \sim 1[0]\) \\
\hline
\end{tabular}

0 : invalid.
1: valid.
\begin{tabular}{|l|l|}
\hline F9 - 27 load shedding test level & \(0.0 \% \sim 100.0 \%\) ( rated current of motor ) [10.0\%] \\
\hline F9-28 off-load test time & \(0.0 \mathrm{~s} \sim 60.0 \mathrm{~s}[1.0 \mathrm{~s}]\) \\
\hline
\end{tabular}

F9-26 off-load protection function is valid, when the frequency inverter output current is less than the off-load detection level F9-27 and the duration is greater than the off-load detection time F9-28, and the frequency inverter output frequency is automatically reduced to \(7 \%\) of the rated frequency. During the period of off-load protection, if the load recovers, the frequency inverter will automatically resume operating at the set frequency.
\begin{tabular}{|l|l|}
\hline F9 - 30 over-speed detection value & \(0.0 \%-50.0 \%\) ( maximum frequency ) [ \(20.0 \%\) ] \\
\hline F9 - 31 over-speed detection time & \(0.0 \mathrm{~s} \sim 60.0 \mathrm{~s}[1.0 \mathrm{~s}]\) \\
\hline
\end{tabular}

When the frequency inverter detects that the actual rotational speed of the motor exceeds the maximum frequency, the exceeding value is greater than the over-speed detection value F9-30, and the duration is greater than the over-speed detection time F9-31, the frequency inverter fails to alarm OSF, and processes it according to the failure protection operation mode.

If the over-speed detection time F9-31 is 0.0 s, the over-speed fault detection will be cancelled.
\begin{tabular}{|l|l|}
\hline F9 - 32 speed deviation too large detection value & \(0.0 \%-50.0 \%\) ( maximum frequency ) [ \(20.0 \%\) ] \\
\hline F9 - 33 excessive speed deviation detection time & \(0.0 \mathrm{~s} \sim 60.0 \mathrm{~s}[5.0 \mathrm{~s}]\) \\
\hline
\end{tabular}

When the frequency inverter detects that the actual rotation speed of the motor deviates from the set frequency, the deviation is greater than the measured value F9-32 of excessive speed deviation, and the duration is greater than the detected time F9 - 33 of excessive speed deviation, the frequency inverter fails to give an alarm DEU and processes it according to the failure protection action mode.

When the detection time for excessive speed deviation is 0.0 s , the fault detection for excessive speed deviation will be cancelled.

\section*{FA Group process control PID function}

PID control is a common method of process control. By performing proportional, integral and differential operations on the difference between the feedback signal of the controlled quantity and the target signal, and adjusting the output frequency of the frequency inverter, a closed loop system is formed to stabilize the controlled quantity at the target value.

Suitable for flow control, pressure control, temperature control and other process control occasions. Figure 5 27 is the control principle block diagram of process PID.


Figure 5-27 process PID principle block diagram
\begin{tabular}{|l|l|}
\hline FA - 00 PID given channel selection & \(0 \sim 6[0]\) \\
\hline 0: FA -01 setting. & \\
1: Al10 \\
2: AI2 \\
3: Al3 \\
4: X5 pulse setting & \\
5: communication settings. & \\
6: multi-speed setting. & \\
\hline FA - 01 PID digital setting & \(0.0 \% \sim 100.0 \%[50.0 \%]\) \\
\hline
\end{tabular}

The setting target amount of the process PID is a relative value, and the setting range is \(0.0 \%-100.0 \%\). Similarly, the feedback quantity of PID is also a relative quantity, and the function of PID is to make these two relative quantities the same.
\begin{tabular}{|l|l|}
\hline FA - 02 PID feedback channel selection & \(0 \sim 8[0]\) \\
\hline 0: Al1. & \\
1: Al2. & \\
2: AI3. \\
3: AI1-AI2 \\
4: X5 pulse quantity. \\
5: communication. & \\
6: Al1+AI2 \\
7: MAX (|AI1 \(|\),\(| AI2 \mid)\) & \\
\end{tabular}

8: MIN (|AI1|, |AI2|)
The feedback amount of the process PID is also a relative value, and the setting range is \(0.0 \%-100.0 \%\).
FA - 03 PID direction of action

0: positive effect
When the feedback signal of PID is less than a given amount, the output frequency of the frequency inverter increases. Such as tension control occasions for winding.

1: reaction.
When the feedback signal of PID is less than a given amount, the output frequency of the frequency inverter will be decreased Such as tension control occasions for unwinding.

This function is affected by the reversal of the direction of action of the multi-function terminal PID (function 35), which requires attention in use.
\begin{tabular}{|l|l|} 
FA - 04 PID gives feedback range & \(10 \sim 65535\) [1000] \\
\hline
\end{tabular}

PID given feedback range is dimensionless unit, used for PID given display U0-15 and PID feedback display u0 - 16.

The relative value of the given feedback of PID is \(100.0 \%\), corresponding to the given feedback range FA - 04. For example, if FA - 04 is set to 2000, when the PID is given \(100.0 \%\), the PID given display u0-15 is 2000 .
\begin{tabular}{|l|l|}
\hline FA-05 proportional gain Kp1 & \(0.0 \sim 100.0[20.0]\) \\
\hline FA-06 integration time Ti1 & \(0.01 \mathrm{~s} \sim 10.00 \mathrm{~s}[2.00 \mathrm{~S}]\) \\
\hline FA-07 differential time Td1 & \(0.00 \sim 10.000[0.000 \mathrm{~s}]\) \\
\hline
\end{tabular}

Proportional gain Kp1:
Determining the adjusting intensity of the whole PID regulator, the greater kp1, the greater the adjusting intensity. The parameter is 100.0 indicates when PID is inverted when the deviation between the feed quantity and the given quantity is \(100.0 \%\), the regulating amplitude of the PID regulator to the output frequency command is the maximum frequency.

Integration time Ti1:
Determines the strength of integral adjustment of PID regulator. The shorter the integration time, the greater the adjustment intensity the integration time refers to when the deviation between the PID feedback quantity and the given quantity is \(100.0 \%\), the integral regulator continuously adjusts after this time, and the adjustment quantity reaches the maximum frequency.

Differential time Td1:
Determines the strength of the PID regulator to adjust the deviation rate of change. The longer the differentiation time, the greater the adjustment intensity Differential time it means that when the feedback amount changes by 100.0 \% within this time, the adjustment amount of the differential regulator is the maximum frequency.
FA - 08 PID inversion cutoff frequency limit
\(0.00 \sim\) maximum frequency \([0.00 \mathrm{~Hz}]\)

In some cases, only when the output frequency of the PID is negative (i.e. the frequency inverter inverts ), can the PID control the given amount and the feedback amount to the same state, but too high an inversion frequency is not allowed in some cases, and FA - 08 is used to determine the upper limit of the inversion frequency.
\begin{tabular}{l|l|} 
FA - 09 PID deviation limit & \(0.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline
\end{tabular}

When the deviation between the given PID quantity and the feedback quantity is less than FA - 09, the PID stops the adjusting action, and the output frequency is stable when the deviation between the given quantity and the feedback is small.
FA - 10 PID differential clipping
0. \(00 \% \sim 100.00 \%[0.10 \%]\)

In PID regulator, the function of differentiation is relatively sensitive, which easily causes system oscillation. The function of PID differentiation is limited to a small range.
\begin{tabular}{|l|l} 
FA - 11 PID given change time & \(0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}[0.00 \mathrm{~s}]\)
\end{tabular}

The given change time of PID refers to the time required for the given value of PID to change from \(0.0 \%\) to 100.0 \%.

When the PID given value changes, the PID given value changes linearly according to the given change time, thus reducing the occurrence of mutation in the given value adverse impact on the system
\begin{tabular}{|l|l|}
\hline FA- 12 PID feedback filtering time & \(0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}[0.00 \mathrm{~s}]\) \\
\hline FA -13 PID output filtering time & \(0.00 \mathrm{~s} \sim 60.00 \mathrm{~s}[0.00 \mathrm{~s}]\) \\
\hline
\end{tabular}

FA- 12 is used to filter the PID feedback quantity. The filter is helpful to reduce the influence of the feedback quantity being interfered, but it will bring about a decrease in the response performance of the process closed loop system.

FA- 13 is used to filter the PID output frequency. This filter will weaken the abrupt change of the frequency inverter output frequency, but it will also bring about a decrease in the response performance of the process closed loop system.
\begin{tabular}{|ll|l|}
\hline FA-15 & Proportional gain kp2 & \(0.0 \sim 100.0[20.0]\) \\
\hline FA-16 & Integration time Ti2 & \(0.01 \mathrm{~s} \sim 10.00 \mathrm{~s}[2.00 \mathrm{~S}]\) \\
\hline FA-17 & Differential time Td2 & \(0.00 \sim 10.000[0.000 \mathrm{~s}]\) \\
\hline
\end{tabular}

In some applications, a group of PID parameters cannot meet the requirements of the whole operation process, and different PID parameters need to be adopted in different situations.

The above function code is used for switching the two groups of PID parameters. The setting mode of regulator parameters FA - \(15 \sim\) FA -17 is similar to parameters FA \(-05 \sim\) FA - 07 .

FA - 18 PID parameter switching conditions \(\quad 0 \sim 3\) [0]
0: do not switch, only use the first group of PID (FA - \(05 \sim\) FA - 07) parameters.
1: switch through \(X\) terminal. Multi-function \(X\) terminal function selection to be set to 43 (PID parameter switching terminal), when the terminal is invalid, select the parameter

Group 1 (FA-05~FA-07), select parameter group 2 (FA-15~FA-17) when the terminal is active
2 : switch automatically according to deviation.
Given the absolute value of deviation from feedback is less than PID parameter switching deviation 1 (FA - 19), PID parameter selection parameter group 1.

Given that the absolute value of the deviation from the feedback is greater than PID switching deviation 2 (FA \(20)\), PID parameter selection selects parameter group 2.

Given that the deviation from feedback is between switching deviation 1 and switching deviation 2 , the PID parameters are linear interpolation values of two sets of PID parameters, as shown in figure 5-28.


Figure 5-28 schematic diagram of PID switching based on deviation

3: automatically switch according to operating frequency.
When the absolute value of the output frequency is equal to 0 , the PID parameter selects parameter group 1 .
When the absolute value of the output frequency is equal to the maximum frequency (F0-16), PID parameter selection selects parameter group 2.

When the output frequency is between 0 Hz and the maximum frequency, the PID parameters are linear interpolation values of two groups of PID parameters, as shown in figure 5-29.


Figure 5-29 schematic diagram of PID switching according to operating frequency
\begin{tabular}{|l|l|}
\hline FA - 19 PID parameter switching deviation 1 & \(0.0 \% \sim\) FA-20 \([20.0 \%]\) \\
\hline FA - 20 PID parameter switching deviation 2 & FA-19 \(\sim 100.0 \%[80.0 \%]\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FA - 21 PID initial value & \(0.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FA - 22 PID initial value holding time & \(0.00 \mathrm{~s} \sim 650.00 \mathrm{~s}[0.00 \mathrm{~s}]\) \\
\hline
\end{tabular}

When the frequency inverter is started, the PID output is fixed to the PID initial value FA - 21, and after the PID initial value keeping time FA - 22 is continued, PID began the closed loop adjustment operation. Figure 5-30 is a functional diagram of the initial PID value.


Figure 5-30 functional diagram of PID initial value
\begin{tabular}{|l|l|}
\hline FA - 23 twice output deviation positive maximum & \(0.00 \% \sim 100.00 \%[1.00 \%]\) \\
\hline FA - 24 twice output deviation reverse maximum & \(0.00 \% \sim 100.00 \%[1.00 \%]\) \\
\hline
\end{tabular}

This function is used to limit the difference between the two beats ( \(2 \mathrm{~ms} /\) beat) of the PID output so as to prevent the PID output from changing too fast and stabilize the operation of the frequency inverter.

FA - 23 and FA - 24 respectively correspond to the maximum absolute value of the output deviation in forward and reverse directions.
\begin{tabular}{l|l|} 
FA - 25 PID integral attribute & \(00 \sim 11[00]\) \\
\hline
\end{tabular}

Bit: PID integral separation
0 : invalid.
No matter what kind of state, Ti integral of PID plays a role.
1: valid.
When the multifunctional digital \(X\) - terminal integral pause (function 22) is valid, the integral PID integral of the PID stops the operation, and at this time the PID only has proportional and differential effects.

Ten digits: whether to stop integrating after outputting to the limit value.
0 : continue to score.
When the PID outputs to the upper limit frequency or the lower limit frequency, the integral calculation will continue.

1: stop points.
When the PID is output to the upper limit frequency or the lower limit frequency, the calculation of the PID integral will stop at this time, which may help to reduce the overshoot of the PID.
\begin{tabular}{|l|l|}
\hline FA- 26 PID feedback loss detection value & \(0.1 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FA - 27 PID feedback loss detection time & \(0.0 \mathrm{~s} \sim 20.0 \mathrm{~s}[0.0 \mathrm{~s}]\) \\
\hline
\end{tabular}

When FA - \(26=0.0\), PID does not judge that feedback is lost;
When FA - 26 is not 0, when the PID feedback amount is less than the feedback loss detection value FA - 26 and the duration exceeds the PID feedback loss detection time FA - 27, the frequency inverter alarms the fault pidf and processes it according to the selected fault processing method.
\begin{tabular}{|l|l|}
\hline FA - 28 PID shutdown operation & \(0 \sim 1[0]\) \\
\hline
\end{tabular}

0: stop without calculation.
1: stop operation.
Use to select whether the PID will continue to operate under the shutdown state of the PID. In general applications, PID should the operation should be stopped.
\begin{tabular}{|l|l|}
\hline FA - 29 pressure sleep option & \(0 \sim 1[0]\) \\
\hline
\end{tabular}

0: the frequency inverter sleeps and wakes up according to the frequency node according to the functions of F8 14 ~ F8-17.

1: the frequency inverter sleeps and wakes up according to the pressure node according to the functions of FA \(30 \sim\) FA - 33.
\begin{tabular}{|l|l|}
\hline FA -30 wake-up pressure percentage & \(0.0 \sim 100.0 \%[80.0 \%]\) \\
\hline FA - 31 wake-up pressure delay time & \(0 \sim 6000.0[1.0]\) \\
\hline
\end{tabular}

Wake up pressure percent = (wake up pressure / target pressure) \(\times 100 \%\).
When the feedback pressure is less than the wake-up pressure, it will enter the wake-up state after FA - 31 times.
\begin{tabular}{|l|l|}
\hline FA -32 sleep pressure percentage & \(50.0 \sim 1000.0 \%[80.0 \%]\) \\
\hline FA -33 sleep pressure delay time & \(0 \sim 6000.0[60.0]\) \\
\hline
\end{tabular}

Sleep pressure percentage = (sleep pressure / target pressure) \(\mathrm{X} 100 \%\).
When the feedback pressure is greater than the sleep pressure, it will enter the sleep state.
Note: during sleep, the operation indicator on the control panel flashes for 1 s cycle.

\section*{FB Group 2 motor parameters}

HV480 can switch operation between two motors. The two motors can respectively set motor nameplate parameters and can respectively enter Line motor parameter tuning, VF control or vector control can be selected separately, encoder related parameters can be set separately, and parameters related to VF control or vector control performance can be set separately.

The FB group function code corresponds to all parameters of the motor 2 and FB group. Its content definition and usage method are consistent with those of the first motor. This will not be repeated here. The user can refer to the description of the relevant parameters of the first motor. The specific FB-00~FB-37 refers to f1-00~f1-37 group parameters, and FB-38~FB-55 refers to F2-00~F2-17 parameters.
\begin{tabular}{|c|c|}
\hline FB-61 2nd motor control mode & \(0 \sim 2\) [0] \\
\hline \begin{tabular}{l}
When the motor is selected as the second motor, the the same as F0-01. \\
0: no PG open loop vector control 1 \\
1: no PG open loop vector control 2
V/F
\end{tabular} & trol mode takes effect, and the definitions of \(0 \sim 2\) are \\
\hline FB - 62 second motor acceleration and deceleration time selection & 0~4 [0] \\
\hline
\end{tabular}

0 : the acceleration and deceleration time is the same as that of the first motor.
1: the first group of acceleration and deceleration time

2: acceleration and deceleration time of the second group
3: acceleration and deceleration time of the third group
4: the fourth group of acceleration and deceleration time
FB - 63 2nd motor torque boost \(0.0 \% \sim 30.0 \%\) [model determination]

Same as F3-01 torque boost function of the first motor.
FB - 64 second motor oscillation suppression gain
0 ~ 100 [model determination]
Same as F3-11 oscillation suppression function of the first motor.

\section*{FC Group multi-segment instruction and simple PLC function}

HV480 multi-segment instruction has more abundant functions than usual multi-segment speed. Besides realizing multi-segment speed function, it can also be used as a voltage source for VF separation and a given source for process PID. For this reason, the dimension of the multi-segment instruction is a relative value.

The simple PLC function is a multi-section speed generator. The frequency inverter automatically numbers the running frequency and direction according to the running time to meet the technological requirements. The function was previously completed by the PLC (programmable controller) and now depends on the frequency inverter.As shown in figure 5-31.


Figure 5-31 simple PLC operation diagram
In fig. 5-31, a1~a15 / D1 ~ d15 are the acceleration and deceleration times of the stage where they are located, while \(\mathrm{f} 1 \sim \mathrm{f} 15\) and \(\mathrm{t} 1 \sim \mathrm{t} 15\) are the set frequencies and stage operation times of the stage where they are located.
\begin{tabular}{|l|l|}
\hline FC-00 Multi - segment instruction 0 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC-01 Multi - segment instruction 1 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC-02 Multi - segment instruction 2 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FC - 03 multi-segment instruction 3 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 04 multi-segment instruction 4 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 05 multi-segment instruction 5 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 06 multi-segment instruction 6 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 07 multi-segment instruction 7 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 08 multi-segment instruction 8 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 09 multi-segment instruction 9 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 10 multi-segment instruction 10 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 11 multi-segment instruction 11 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 12 multi-segment instruction 12 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 13 multi-segment instruction 13 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 14 multi-segment instruction 14 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline FC - 15 multi-segment instruction 15 & \(-100.0 \% \sim 100.0 \%[0.0 \%]\) \\
\hline
\end{tabular}

Multi-segment instruction can be used in three situations: multi-segment speed as frequency source, simple PLC, voltage source as VF separation, and setting source of process PID.

In the three applications, the dimension of the multi-segment instruction is the relative value, ranging from 100.0 \% to 100.0 \%.

Which is the percentage of the relative maximum frequency when used as the frequency source.
When VF is used as a separate voltage source, it is a percentage of the rated voltage of the motor.
Given the relative value of PID, multi-segment instructions as the PID setting source do not require dimensional conversion.

The multi-segment instructions need to be switched and selected according to different States of the multi-function digital \(X\) terminal, please refer to F5 group for details relevant instructions.
```

FC - 16 simple PLC operation mode

```

0: stop after single operation. As shown in figure 5-32, the frequency inverter stops automatically after completing one cycle, and it needs to be transported again to run.


Figure 5-32 shutdown modes after single cycle
1: Maintain the final value at the end of a single run. As shown in figure \(5-33\), the frequency inverter automatically maintains the operating frequency of the last section after completing one cycle.


Figure 5-33 PLC maintains final value after single cycle
2: Keep running in a cycle.
After the frequency inverter completes one cycle, it will automatically start the next cycle until there is a stop command.
\begin{tabular}{l|l} 
FC - 17 Simple PLC memory selection & \(00 \sim 11\) [00]
\end{tabular}
Bit: power failure memory option.
0 : no memory when power fails.
When power is lost, the PLC operation state will not be memorized. When power is turned on, the PLC will start to run again from the first stage.

1: power failure memory.
When power is lost, the PLC operation status, including operation phase and frequency, and the time that has already been run, will be memorized. Continue to run from the memory stage after power - up.

Ten digits: stop memory option.
0 : stop the machine and do not remember.
Each start-up starts from the first stage.
1: stop memory.
PLC shutdown memory is to record the previous PLC operation phase and frequency during shutdown, and continue to operate from the memory stage during the next operation.

Chapter V Description of parameters
\begin{tabular}{|c|c|}
\hline FC - 18 Simple PLC section 0 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})\) ] \\
\hline FC - 19 Simple PLC section 0 acceleration and deceleration time & 0~3 [0] \\
\hline FC-20 Simple PLC first run time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})\) ] \\
\hline FC - 21 Simple PLC first acceleration and deceleration time & 0~3 [0] \\
\hline FC - 22 Simple PLC section 2 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})\) ] \\
\hline FC - 23 Simple PLC second acceleration and deceleration time & \(0 \sim 3[0]\) \\
\hline FC - 24 Simple PLC section 3 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline FC - 25 Simple PLC section 3 acceleration and deceleration time & \(0 \sim 3\) [0] \\
\hline FC-26 Simple PLC section 4 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}\) ( h ) [0.0s(h)] \\
\hline FC - 27 Simple PLC section 4 acceleration and deceleration time & 0~3 [0] \\
\hline FC - 28 Simple PLC section 5 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}\) ( h [ \([0.0 \mathrm{~s}(\mathrm{~h})\) ] \\
\hline FC - 29 Simple PLC 5 acceleration and deceleration time & 0~3 [0] \\
\hline FC - 30 Simple PLC section 6 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}\) ( h [ \([0.0 \mathrm{~s}(\mathrm{~h})\) ] \\
\hline FC - 31 Simple PLC section 6 acceleration and deceleration time & 0~3 [0] \\
\hline FC - 32 Simple PLC section 7 operation time & 0.0s(h)~6500.0s(h) [0.0s(h)] \\
\hline FC - 33 Simple PLC section 7 acceleration and deceleration time & \(0 \sim 3\) [0] \\
\hline FC - 34 Simple PLC section 8 operation time & 0.0s(h) \(\sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})\) ] \\
\hline FC - 35 Simple PLC section 8 acceleration and deceleration time & 0~3 [0] \\
\hline FC - 36 Simple PLC section 9 operation time & 0.0s(h)~6500.0s(h) [0.0s(h)] \\
\hline FC - 37 Simple PLC section 9 acceleration and deceleration time & \(0 \sim 3\) [0] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline FC - 38 Simple PLC section 10 operation time & \(0.0 \mathrm{~s}(\mathrm{~h}) \sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline \begin{tabular}{l} 
FC - 39 Simple PLC 10th acceleration and deceleration \\
time
\end{tabular} & \(0 \sim 3[0]\) \\
\hline FC - 40 Simple PLC section 11 operating time & \(0.0 \mathrm{~s}(\mathrm{~h}) \sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline \begin{tabular}{l} 
FC - 41 Simple PLC section 11 acceleration and \\
deceleration time
\end{tabular} & \(0 \sim 3[0]\) \\
\hline FC - 42 Simple PLC section 12 operation time & \(0.0 \mathrm{~s}(\mathrm{~h}) \sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline \begin{tabular}{l} 
FC -43 Simple PLC section 12 acceleration and \\
deceleration time
\end{tabular} & \(0 \sim 3[0]\) \\
\hline FC - 44 Simple PLC section 13 operating time & \(0.0 \mathrm{~s}(\mathrm{~h}) \sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline \begin{tabular}{l} 
FC - 45 Simple PLC section 13 acceleration and \\
deceleration time
\end{tabular} & \(0 \sim 3[0]\) \\
\hline FC - 46 Simple PLC section 14 operating time & \(0.0 \mathrm{~s}(\mathrm{~h}) \sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline \begin{tabular}{l} 
FC -47 Simple PLC section 14 acceleration and \\
deceleration time
\end{tabular} & \(0 \sim 3[0]\) \\
\hline FC - 48 Simple PLC section 15 operating time & \(0.0 \mathrm{~s}(\mathrm{~h}) \sim 6500.0 \mathrm{~s}(\mathrm{~h})[0.0 \mathrm{~s}(\mathrm{~h})]\) \\
\hline \begin{tabular}{l} 
FC -49 Simple PLC section 15 acceleration and \\
deceleration time
\end{tabular} & \(0 \sim 3[0]\) \\
\hline
\end{tabular}

\section*{FC - 50 Simple PLC running time unit}

0: S (seconds)
1: h (hours)
FC - 51 multi-segment instruction 0 given mode \(\quad 0 \sim 6[0]\)
0 : Given function code FC - 00
1: Al1
2: Al2
3: Al3
4: X5 pulse input.
5: PID.
6: Given the preset frequency (F0-09), up / down can be modified.

\section*{FD Group communication parameters}

Please refer to appendix a: description of communication parameters of FD group.

\section*{FE Group user-defined function code}

This group function code is a user-defined parameter group.
The user can select the required parameters from all HV480 function codes and summarize them to the Fe group as user-customized parameters.

Number to facilitate viewing and changing operations The Fe group provides up to 30 user-defined parameters, and the displayed value of the Fe group parameter is f 0.00 , which indicates the user function code is empty.

When entering the user-defined parameter mode, the display function codes are defined by FE-00~FE-31. The order is the same as that of the FE group function codes. If FO-00, it will be skipped.

\section*{FF Group control optimization parameters}
\begin{tabular}{|l|l|}
\hline FF - 04 wave-by-wave current limiting enable & \(0 \sim 1[0]\) \\
\hline
\end{tabular}

0 : not enabled.
1: enabling wave-by-wave current limiting.
By enabling the wave-by-wave current limiting function, the over-current fault of the frequency inverter can be minimized and the frequency inverter can be guaranteed to run uninterruptedly.
\begin{tabular}{l|l}
\hline FF - 06 uder voltage point setting & \(60 \% \sim 140 \%\) [100.0\%]
\end{tabular}

Voltage value of frequency inverter under voltage fault LV
\begin{tabular}{l|l} 
FF - 09 Over voltage point setting & \(200.0 \mathrm{~V} \sim 2200.0 \mathrm{~V}\) [820.0V]
\end{tabular}

Note: the factory value is also the upper limit value of the internal Over voltage protection of the frequency inverter. This parameter setting will only take effect if the FF - 09 setting value is less than the factory value. If it is higher than the factory value, the factory value shall prevail.

\section*{E0 Group fault record}
\begin{tabular}{|l|l|}
\hline E0-00 first failure type & \(0 \sim 99[0]\) \\
\hline E0-01 second failure type & \(0 \sim 99[0]\) \\
\hline E0-02 third ( most recent ) fault type & \(0 \sim 99[0]\) \\
\hline E0-03 frequency at third failure & \(0.00 \sim 500.00[0.00 \mathrm{HZ}]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline E0-04 current at third fault & \(0.00 \sim 500.00\) [0.00A] \\
\hline E0 - 05 bus voltage at the third fault & \(0.0 \sim 2000.0\) [0.0V] \\
\hline E0 - 08 frequency inverter status at third failure & 0~65535 [0] \\
\hline E0 - 09 power-on time for third failure & 0~65535 [0] \\
\hline E0-10 run time at third failure & 0~65535 [0] \\
\hline E0 - 13 frequency at second failure & \(0.00 \sim 500.00\) [0.00HZ] \\
\hline E0 - 14 current at second failure & \(0.00 \sim 500.00[0.00 \mathrm{~A}]\) \\
\hline E0 - 15 bus voltage at second failure & \(0.0 \sim 2000.0\) [0.0V] \\
\hline E0-18 frequency inverter status at second failure & 0~65535 [0] \\
\hline E0 - 19 power-on time for second failure & 0~65535 [0] \\
\hline E0-20 run time at second failure & 0~65535 [0] \\
\hline E0 - 23 frequency at first failure & \(0.00 \sim 500.00\) [0.00HZ] \\
\hline E0 - 24 current at first failure & \(0.00 \sim 500.00[0.00 \mathrm{~A}]\) \\
\hline E0-25 bus voltage at first failure & \(0.0 \sim 2000.0\) [0.0V] \\
\hline E0-28 frequency inverter status at first failure & 0~65535 [0] \\
\hline E0-29 power-on time for first failure & 0~65535 [0] \\
\hline E0 - 30 run time at first failure & 0~65535 [0] \\
\hline
\end{tabular}

\section*{P2 Group AIA correction}
\begin{tabular}{|l|l|}
\hline P2 - 00 A I1 measured voltage 1 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[2.000 \mathrm{~V}]\) \\
\hline P2 - 01 A I1 shows voltage 1 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[2.000 \mathrm{~V}]\) \\
\hline P2 - 02 A I1 measured voltage 2 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[8.000 \mathrm{~V}]\) \\
\hline P2 - 03 Al1 shows voltage 2 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[8.000 \mathrm{~V}]\) \\
\hline P2 - 04 Al2 measured voltage 1 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[2.000 \mathrm{~V}]\) \\
\hline P2 - 05 Al2 shows voltage 1 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[2.000 \mathrm{~V}]\) \\
\hline P2 - 06 Al2 measured voltage 2 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[8.000 \mathrm{~V}]\) \\
\hline P2 - 07 Al2 shows voltage 2 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[8.000 \mathrm{~V}]\) \\
\hline P2 - 08 Al3 measured voltage 1 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[2.000 \mathrm{~V}]\) \\
\hline P2 - 09 Al3 shows voltage 1 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[2.000 \mathrm{~V}]\) \\
\hline P2 - 10 Al3 measured voltage 2 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[8.000 \mathrm{~V}]\) \\
\hline P2 - 11 Al3 shows voltage 2 & \(-10.000 \mathrm{~V} \sim 10.000 \mathrm{~V}[8.000 \mathrm{~V}]\) \\
\hline
\end{tabular}

The set of function codes is used to correct the analog quantity input Al to eliminate the influence of zero offset and gain at the Al input.

The set of functional parameters has been corrected at the factory. When the factory value is restored, it will be restored to the factory corrected value.Generally, no correction is required at the application site.

Measured voltage refers to the actual voltage measured by measuring instruments such as multimeter.
Display voltage refers to the voltage display value sampled by the frequency converter. See u0 group ai pre-correction voltages (U0-21, U0-22, U0-23) for display.

During correction, two voltage values are input to each AI input port, and the values measured by the multimeter and the values read by the U0 group are input into the above function codes accurately, then the frequency converter will automatically correct the zero offset and gain of AI.

For the situation where the voltage given does not match the actual sample voltage of the frequency converter, a field correction method can be adopted so that the sampling value of the frequency convert is consistent with the expected given value.


Figure 5-34 Al calibration method diagram

\section*{U0 Group monitoring parameter group}

The UO parameter group is used to monitor the operation status information of the frequency inverter. Customers can check it through the panel to facilitate on-site commissioning. They can also read the parameter group values through communication for monitoring by the upper computer. The communication address is \(0 \times 7000 \sim\) \(0 \times 7044\).
\begin{tabular}{|c|l|l|l|}
\hline U0-00 & Running frequency & \multirow{2}{*}{ Indication range } & \(0.00: 500.00 \mathrm{~Hz}\) \\
\hline U0-01 & Running frequency & & \\
\hline
\end{tabular}

Display the absolute values of the theoretical operating frequency and the set frequency of the frequency inverter. See UO-19 for actual output frequency of frequency inverter.
\begin{tabular}{|c|c|c|c|}
\hline U0-02 & Busbar voltage & Indication range & \(0.0 \mathrm{~V} \sim 3000.0 \mathrm{~V}\) \\
\hline
\end{tabular}

Display the inverter bus voltage value.
\begin{tabular}{|c|c|c|c|}
\hline U0-03 & Output voltage & Indication range & \(0 \mathrm{~V} \sim 1140 \mathrm{~V}\) \\
\hline
\end{tabular}

Display the output voltage value of the frequency inverter during operation.
\begin{tabular}{|c|c|c|c|}
\hline & & & \(0.00 \mathrm{~A} \sim 655.35 \mathrm{~A}\) \\
U0-04 & Output current & Indication range & \begin{tabular}{c} 
(frequency inverter power \(<=55 \mathrm{kw}\) ) \\
\\
\end{tabular} \\
& & \(0.0 \mathrm{~A} \sim 6553.5 \mathrm{~A}\) \\
& & \(0.00 \mathrm{~A} \sim 6553.5 \mathrm{~A}\) \\
(frequency inverter power \(>55 \mathrm{kw}\) ) \\
\hline
\end{tabular}

Display the output current value of the frequency inverter during operation.
\begin{tabular}{|c|c|c|c|}
\hline U0-05 & Output power & Indication range & \(0 \sim 32767\) \\
\hline
\end{tabular}

Display the output power value of the frequency inverter during operation.
\begin{tabular}{|c|c|c|c|}
\hline U0-06 & Output torque & Indication range & \(-200.0 \%-200.0 \%\) \\
\hline
\end{tabular}

Display the output torque value of the frequency inverter during operation.
\begin{tabular}{|c|c|c|c|}
\hline U0-07 & \(X\) terminal input status & Indication range & \(0 \sim 32767\) \\
\hline
\end{tabular}

Display the current \(X\) terminal input status value. After being converted into binary data, each bit corresponds to \(X\) input signal, a value of 1 indicates that the input is a high level signal, and a value of 0 indicates that the input is a low level signal. The correspondence between each bit and the input terminal is as follows:
\begin{tabular}{|c|c|c|c|}
\hline Bit0 & Bit1 & Bit2 & Bit3 \\
\hline X1 & X2 & X3 & X4 \\
\hline Bit4 & Bit5 & Bit6 & \\
\hline X5 & X6 & X7 & \\
\hline
\end{tabular}

Chapter V Description of parameters
\begin{tabular}{|c|c|c|c|}
\hline U0-08 & Do output state & Indication range & \(0 \sim 1023\) \\
\hline
\end{tabular}

Display the current DO terminal output status value. After being converted into binary data, each bit corresponds to a DO signal, indicating the output high level for 1 and the output low level for 0 . The correspondence between each bit and the output terminal is as follows:
\begin{tabular}{|c|c|c|c|}
\hline & Bit1 & & Bit3 \\
\hline & Relay 1 & & D01 \\
\hline Bit4 & & & \\
\hline D02 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline U0-10 & Al2 voltage ( v )/ current ( mA ) & Indication range & \begin{tabular}{c}
\(0.00 \mathrm{~V} \sim 10.57 \mathrm{~V}\) \\
\(0.00 \mathrm{~mA} \sim 20.00 \mathrm{~mA}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline U0-14 & Load speed display & Indication range & \(0 \sim 65535\) \\
\hline U0-15 & PID setting & Indication range & \(0 \sim 65535\) \\
\hline U0-16 & PID feedback & Indication range & \(0 \sim 65535\) \\
\hline
\end{tabular}

Display the PID setting value and feedback value. The value format is as follows:
PID setting = PID setting (percentage) * FA - 04
PID feedback = PID feedback (percentage) * FA - 04.
\begin{tabular}{|c|c|c|c|}
\hline U0-18 & PULSE input pulse frequency & Indication range & \(0.00 \mathrm{kHz} \sim 100.00 \mathrm{KHz}\) \\
\hline
\end{tabular}

Display X 5 high speed pulse sampling frequency, minimum unit is 0.01 KHz .
\begin{tabular}{|c|c|c|c|}
\hline U0-19 & Feedback speed & Indication range & \(-320.00 \mathrm{~Hz} \sim 320.00 \mathrm{~Hz}\) \\
\hline U0-20 & Remaining operating time & Indication range & \(0.0 \sim 6500.0\) minutes \\
\hline U0-21 & Al1 pre-correction voltage & Indication range & \(0.000 \mathrm{~V} \sim 10.570 \mathrm{~V}\) \\
\hline U0-22 & Al2 voltage / current before \\
correction
\end{tabular} Indication range \(\left.\quad\)\begin{tabular}{c}
\(0.000 \mathrm{~V} \sim 10.570 \mathrm{~V}\) \\
\(0.000 \mathrm{~mA} \sim 20.000 \mathrm{~mA}\)
\end{tabular} \right\rvert\, \begin{tabular}{ccc|}
\hline U0-23 & Al3 voltage before correction & Indication range
\end{tabular}

Display the actual value of the analog input sample voltage / current.
The voltage / current actually used has been linearly corrected so that the sampled voltage / current is in line with the actual input voltage / electricityThe flow deviation is smaller.
See U0 - 09, U0 - 10, U0 - 11 for the correction voltage / current actually used, and P3 group for the correction method.
\begin{tabular}{|c|c|c|c|}
\hline U0-24 & Linear velocity & Indication range & \(0 \sim 65535 \mathrm{~m} / \mathrm{min}\) \\
\hline U0-27 & PULSE input pulse frequency & Indication range & \(0: 65535 \mathrm{~Hz}\) \\
\hline
\end{tabular}

Display X 5 high speed pulse sampling frequency in 1 hz . It is the same data as \(\mathrm{u} 0-18\), only showing different units.
\begin{tabular}{|c|l|l|l|}
\hline U0-28 & communication settings value & Indication range & communication settings value \\
\hline
\end{tabular}

Display data written through address \(0 \times 1000\).
\begin{tabular}{|c|c|c|c|}
\hline U0-30 & Main frequency X display & Indication range & \(0.00 \mathrm{~Hz} \sim 500.00 \mathrm{~Hz}\) \\
\hline
\end{tabular}

Display the main frequency source \(X\) frequency setting.
\begin{tabular}{|c|c|c|c|}
\hline U0-31 & Auxiliary frequency Y display & Indication range & \(0.00 \mathrm{~Hz} \sim 500.00 \mathrm{~Hz}\) \\
\hline
\end{tabular}

Display the auxiliary frequency Y frequency setting.
\begin{tabular}{|c|c|c|c|}
\hline U0-35 & Target torque & Indication range & \(200.0 \%-200.0 \%\) \\
\hline
\end{tabular}

Display the current torque upper limit setting
\begin{tabular}{|c|c|c|c|}
\hline U0-37 & Power factor angle & Indication range & - \\
\hline
\end{tabular}

Display the current operating power factor angle.
\begin{tabular}{|c|c|c|c|}
\hline U0-39 & VF separates target voltage & Indication range & \(0 \mathrm{v} \sim\) rated voltage of motor \\
\hline U0-40 & VF separates output voltage & Indication range & \(0 v \sim\) rated voltage of motor \\
\hline
\end{tabular}

Display the target output voltage and the current actual output voltage when operating in the VF separation state. VF separation is described in F3 group.
\begin{tabular}{|c|c|c|c|}
\hline U0-41 & X input status visual display & Indication range & light for valid extinction is not invalid \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline U0-42 & Do output status visual display & Indication range & - \\
\hline U0-59 & Set frequency & Indication range & \(-100.00 \%-100.00 \%\) \\
\hline U0-60 & Running frequency & Indication range & \(-100.00 \%-100.00 \%\) \\
\hline
\end{tabular}

Display the current set frequency and operating frequency. \(100.00 \%\) corresponds to the maximum frequency of the frequency inverter (F0-16).
\begin{tabular}{|c|c|c|c|}
\hline U0-61 & \begin{tabular}{c} 
Operating state of frequency \\
inverter
\end{tabular} & Indication range & \(0 \sim 65535\) \\
\hline
\end{tabular}

Display the frequency inverter operation status information.
The data definition format is as follows:
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{ U0-61 } & Bit0 & \multirow{2}{*}{0 0: shutdown; 1: forward rotation; 2: reversal } \\
\cline { 2 - 2 } & Bit1 & \multirow{2}{*}{0} \\
\cline { 2 - 2 } & 0: constant speed; 1: accelerating; 2: slow down \\
\cline { 2 - 2 } & Bit2 & \\
\cline { 2 - 2 } & Bit3 & \(0:\) bus voltage is normal; 1: under voltage \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline U0-62 & Current fault code & Indication range & \(0 \sim 99\) \\
\hline
\end{tabular}

Display the current fault code.
\begin{tabular}{|c|c|c|c|}
\hline U0-65 & Upper torque limit & Indication range & \(-200.00 \%-200.00 \%\) \\
\hline
\end{tabular}

Display the current upper limit of the given torque.
\begin{tabular}{|c|c|c|c|}
\hline U0-69 & \begin{tabular}{c} 
Frequency inverter module \\
radiator temperature
\end{tabular} & Indication range & \(0^{\circ} \mathrm{C} \sim 120^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Display the temperature of the frequency inverter module IGBT.
The over-temperature protection values of IGBT modules of different models are different.
\begin{tabular}{|c|c|c|c|}
\hline U0-70 & Accumulated operating time & Indication range & \(0 \sim 65536 \mathrm{~h}\) \\
\hline U0-71 & Cumulative power-on time & Indication range & \(0 \sim 65536 \mathrm{~h}\) \\
\hline U0-72 & Cumulative power consumption & Indication range & \(0 \sim 65535\) degrees \\
\hline U0-73 & Product Number & Indication range & - \\
\hline U0-74 & Software version number & Indication range & - \\
\hline
\end{tabular}

\section*{Chapter VI Abnormal diagnosis}

\subsection*{6.1 Fault alarm and countermeasures}
\begin{tabular}{|c|c|c|c|c|}
\hline Sr. No. & Fault name & Operation panel display & Troubleshooting of cause of failure & Countermeasures for fault handling \\
\hline 01 & Frequency inverter unit protection & 5 L & \begin{tabular}{l}
1. Frequency inverter output circuit short circuit \\
2. Motor and frequency inverter wiring is too long \\
3. Module overheating \\
4. The internal wiring of the frequency inverter is loose \\
5. Abnormal main control board \\
6. Abnormal drive plate \\
7. Abnormal frequency inverter module
\end{tabular} & \begin{tabular}{l}
1. Eliminate peripheral faults \\
2. Install reactors or output filters \\
3. Check whether the air duct is blocked, fan is it working properly and excluded question \\
4. Plug in all connection lines \\
5. Seek technical support \\
6. Seek technical support \\
7. Seek technical support
\end{tabular} \\
\hline 02 & Accelerated over current & -act & \begin{tabular}{l}
1. Frequency inverter output circuit is connected ground or short circuit \\
2. The control mode is vector and no parameter identification is carried out \\
3. The acceleration time is too short \\
4. Manual torque increase or V/F curve is not appropriate \\
5. low voltage \\
6. Start the rotating motor \\
7. Sudden loading during acceleration \\
8. The selection of frequency inverter is small
\end{tabular} & \begin{tabular}{l}
1. Eliminate peripheral faults \\
2. Identify motor parameters \\
3. Increase the acceleration time \\
4. Adjust the manual lifting torque or V/F curve \\
5. Adjust the voltage to the normal range \\
6. Choose speed tracking start or wait for the electric machine to stop before starting \\
7. Cancel the sudden load \\
8. Choose the frequency inverter with higher power level
\end{tabular} \\
\hline 03 & Deceleration over current & ocz & \begin{tabular}{l}
1. Frequency inverter output circuit is connected ground or short circuit \\
2. The control mode is vector and no parameter identification is carried out \\
3. The deceleration time is too short \\
4. Low voltage \\
5. Sudden load increase during deceleration \\
6. No brake unit and system added dynamic resistance
\end{tabular} & \begin{tabular}{l}
1. Eliminate peripheral faults \\
2. Identify motor parameters \\
3. Increase the deceleration time \\
4. Adjust the voltage to the normal range \\
5. Cancel the sudden load \\
6. Add brake unit and resistor
\end{tabular} \\
\hline 04 & Constant speed over current & -83 & \begin{tabular}{l}
1. Frequency inverter output circuit is connected ground or short circuit \\
2. The control mode is vector and there is no carry out parameter identification \\
3. Low voltage \\
4. Whether there is a sudden load in operation \\
5. The selection of frequency inverter is small
\end{tabular} & \begin{tabular}{l}
1. Eliminate peripheral faults \\
2. Identify motor parameters \\
3. Adjust the voltage to the normal range \\
4. Cancel the sudden load \\
5. Choose the frequency inverter with higher power level
\end{tabular} \\
\hline
\end{tabular}

Chapter VI Abnormal diagnosis
\begin{tabular}{|c|c|c|c|c|}
\hline Sr. No. & Fault name & Operation panel display & Troubleshooting of cause of failure & Countermeasures for fault handling \\
\hline 05 & Accelerating Over voltage & -u 1 & \begin{tabular}{l}
1. High input voltage \\
2. There is an external force to drag the motor to run during acceleration \\
3. The acceleration time is too short \\
4. No brake unit and brake resistor are installed
\end{tabular} & \begin{tabular}{l}
1. Adjust the voltage to the normal range \\
2 Cancel the power or add brake resistance \\
3. Increase the acceleration time \\
4. Add brake unit and resistor
\end{tabular} \\
\hline 06 & Deceleration Over voltage & ロu? & \begin{tabular}{l}
1. High input voltage \\
2. There is an external force to drag the motor to run during deceleration \\
3. The deceleration time is too short \\
4. No brake unit and brake resistor are installed
\end{tabular} & \begin{tabular}{l}
1. Adjust the voltage to the normal range \\
2 Cancel the power or add brake resistance \\
3. Increase the deceleration time \\
4. Add brake unit and resistor
\end{tabular} \\
\hline 07 & Constant speed Over voltage & -43 & \begin{tabular}{l}
1. High input voltage \\
2. There is external drag during operation moving motor operation
\end{tabular} & \begin{tabular}{l}
1. Adjust the voltage to the normal range \\
2. Cancel the power or add brake resistance
\end{tabular} \\
\hline 08 & Control power failure & IPF & 1. The input voltage is not within the scope of the specification & 1. Adjust the voltage to the standard range \\
\hline 09 & Under voltage fault & Lu & \begin{tabular}{l}
1. Instantaneous power failure \\
2. Frequency inverter input terminal voltage is not within the scope of the specification requirements \\
3. Bus voltage is not normal \\
4. Rectifier bridge and buffer resistance is not normal \\
5. Abnormal drive plate \\
6. Abnormal control panel
\end{tabular} & \begin{tabular}{l}
1. Reset fault \\
2. Adjust the voltage to the normal range \\
3. Seek technical support \\
4. Seek technical support \\
5. Seek technical support \\
6. Seek technical support
\end{tabular} \\
\hline 10 & frequency inverter overload & -L 1 & \begin{tabular}{l}
1. Whether the load is too large or electricity occurs locked rotation of machine \\
2. The selection of frequency inverter is small
\end{tabular} & \begin{tabular}{l}
1. Reduce the load and check the motor and machine mechanical situation \\
2. Choose the frequency inverter with higher power level
\end{tabular} \\
\hline 11 & Motor overload & - L 2 & \begin{tabular}{l}
1. Is the setting of motor protection parameter F9-01 appropriate \\
2. Whether the load is too large or the electric machine is blocked \\
3. The selection of frequency inverter is small
\end{tabular} & \begin{tabular}{l}
1. Set this parameter correctly \\
2. Reduce the load and check the motor and machinery \\
3. Choose the frequency inverter with higher power level
\end{tabular} \\
\hline 12 & Input phase missing & \(1 \mathrm{PL}_{\mathrm{L}}\) & \begin{tabular}{l}
1. Three-phase input power supply is not normal \\
2. Abnormal drive plate \\
3. Abnormal lightning protection plate \\
4. Abnormal main control board
\end{tabular} & \begin{tabular}{l}
1. Check and eliminate problems existing in peripheral lines \\
2. Seek technical support \\
3. Seek technical support \\
4. Seek technical support
\end{tabular} \\
\hline 13 & Output phase missing & \(\square O_{L}\) & \begin{tabular}{l}
1. The lead from the frequency inverter to the motor is not normal \\
2. The three-phase output of the frequency inverter is unbalanced when the motor is running \\
3. Abnormal drive plate \\
4. Module exception
\end{tabular} & \begin{tabular}{l}
1. Eliminate peripheral faults \\
2, Check whether the motor three-phase winding is normal and troubleshooting \\
3. Seek technical support \\
4. Seek technical support
\end{tabular} \\
\hline 14 & Module overheating & -H & \begin{tabular}{l}
1. The ambient temperature is too high \\
2. The air duct is blocked \\
3. The fan is damaged \\
4. The module thermistor is damaged \\
5. The frequency inverter module is damaged
\end{tabular} & \begin{tabular}{l}
1. Reduce the ambient temperature \\
2. Clean up the air duct \\
3. Replace the fan \\
4. Replace thermistor \\
5. Replace the frequency inverter module
\end{tabular} \\
\hline
\end{tabular}

Chapter VI Abnormal diagnosis
\begin{tabular}{|c|c|c|c|c|}
\hline Sr. No. & Fault name & Operation panel display & Troubleshooting of cause of failure & Countermeasures for fault handling \\
\hline 15 & External equipment failure & ETF & 1. Input the signal of external failure through the multi-function terminal X . & \begin{tabular}{l}
1. Reset operation \\
2. Reset operation
\end{tabular} \\
\hline 16 & Communication failure & Lof & \begin{tabular}{l}
1. The upper computer is not working normally \\
2. The communication line is abnormal \\
3. The communication expansion card FD - 00 is not set correctly \\
4. The setting of communication parameter FD group is incorrect
\end{tabular} & \begin{tabular}{l}
1. Check the PC wiring \\
2. Check the communication connection lines \\
3. Correctly set the type of communication expansion card \\
4. Correctly set communication parameters
\end{tabular} \\
\hline 17 & Contactor failure & reF & \begin{tabular}{l}
1. The drive board and power supply are not normal \\
2. Contactor is abnormal
\end{tabular} & \begin{tabular}{l}
1. Replace the drive board or power board \\
2. Replace contactors
\end{tabular} \\
\hline 18 & Current detection fault & LURF & \begin{tabular}{l}
1. Check the hall element anomaly \\
2. abnormal drive plate
\end{tabular} & \begin{tabular}{l}
1. Replace hall element \\
2. Replace the drive plate
\end{tabular} \\
\hline 19 & Motor tuning failure & TF & \begin{tabular}{l}
1. Motor parameters are not set according to nameplate \\
2. Parameter identification process timed out
\end{tabular} & \begin{tabular}{l}
1. Set motor parameters correctly according to nameplate \\
2. Check the frequency inverter to motor lead
\end{tabular} \\
\hline 21 & \begin{tabular}{l}
EEPROM \\
Read / write fault
\end{tabular} & E2P & 1. EEPROM chip is damaged & 1. Replace the main control board \\
\hline 22 & Hardware failure of frequency inverter & HdF & \begin{tabular}{l}
1. Over voltage exists \\
2. There is over current
\end{tabular} & \begin{tabular}{l}
1. According to the Over voltage fault treatment \\
2. According to the over current fault processing
\end{tabular} \\
\hline 23 & Short circuit to ground & Fnd5 & 1. Motor short circuit to ground & 1. Replace cables or motors \\
\hline 26 & Accumulated running time reaches failure & riff & 1. The accumulated running time reaches the set value & 1. Use the parameter initialization function to clear the record information \\
\hline 27 & User - defined fault 1 & UEF & 1. Input the user-defined fault 1 signal through the multi-function terminal X . & 1. Reset operation \\
\hline 28 & User - defined fault 2 & \(\triangle E F 2\) & 1. Input the user-defined fault 2 signal through the multi-function terminal X . & 1. Reset operation \\
\hline 29 & Accumulated power-up time reaches failure &  & 1. The accumulated power-on time reaches the set value & 1. Use the parameter initialization function to clear the record information \\
\hline 30 & Off load fault & LLF & 1. The operating current of the frequency inverter is less than F9-27 & 1. Confirm whether the load is disconnected or F9-27. does F9-28 parameter settings conform to actual operating conditions \\
\hline 31 & Loss of PID feedback during operation & PidF & 1. PID feedback is less than FA - 26 set point & 1. Check PID feedback signal or set FA - 26 as a suitable value \\
\hline 40 & Wave - by - wave current limiting fault & cba & \begin{tabular}{l}
1. Whether the load is too large or the electric machine is blocked \\
2. The selection of frequency inverter is small
\end{tabular} & \begin{tabular}{l}
1. Reduce the load and check the motor and machinery \\
2. Choose the frequency inverter with higher power level
\end{tabular} \\
\hline 41 & Switching motor failure during operation & rci & 1. Change the current motor selection through terminals during the operation of the frequency inverter & 1. Switch the motor after the frequency inverter stops \\
\hline
\end{tabular}

\subsection*{6.2 Matters needing attention in commissioning:}
1) How to shorten the actual acceleration time in \(V / F\) control mode?
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
Description of \\
phenomenon
\end{tabular} & \begin{tabular}{l} 
If the actual acceleration time of the motor is found during the acceleration process, it is far greater than the set \\
acceleration time.
\end{tabular} \\
\hline \multirow{3}{*}{ Solutions } & \begin{tabular}{l} 
When the target frequency is less than 2 times of the rated frequency, the FF - 10 " over current suppression starting \\
current" can be increased, and the setting value of " over current suppression starting current" of the FF - 10 \\
exceeds 170 each time, which is easy to cause " frequency inverter overload fault ol1" or "current limiting fault \\
CBC".
\end{tabular} & \begin{tabular}{l} 
The target frequency is more than 2 times of the rated frequency. In the process of rapid acceleration, it is likely that \\
the motor will stall (the output frequency of the frequency inverter has reached the target frequency, but the actual \\
speed of the motor has been staying at a certain speed in the medium speed section, but the actual speed of the \\
motor has been staying at a lower frequency or the acceleration time is too long). At this time, the FF - 13 \\
compensation coefficient for high-speed over current suppression current" can be adjusted to \(100 \%\).
\end{tabular} \\
\hline
\end{tabular}

\section*{2) How to shorten the actual deceleration time under V/F control mode?}
\begin{tabular}{|c|c|}
\hline Description of phenomenon & If the actual deceleration time of the motor is found during deceleration, it is far greater than the set deceleration time. \\
\hline \multirow{3}{*}{Solutions} & There is no additional braking resistor or feedback unit. Please increase F3-10 " V/F over excitation gain" setting by 20 \% each time. After increasing F3-10 "V/F over-excitation gain" setting, if the motor oscillation over-voltage fault is caused, please reduce FF-17" over-voltage suppression voltage gain" setting. \\
\hline & The inverter is equipped with a braking resistor or an energy feedback unit, and the input voltage level of the inverter is \(360-420 \mathrm{v}\). Please adjust the FF - 32 " starting voltage of the braking unit" setting to 690 v and the F3 - 10 " V/F over-excitation gain" setting to 0 . \\
\hline & Using shutdown DC brake, recommended setting: \\
\hline
\end{tabular}
3) How to limit the output current under V/F control mode and how to prevent over current fault under extreme impact load?
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c} 
Description of \\
phenomenon
\end{tabular} & In order to better protect the motor, control the upper limit of motor current \\
\hline \multirow{4}{*}{ Solutions } & \begin{tabular}{l} 
The current upper limit can be controlled by adjusting FF - 10 " over current suppression starting current" and " \\
current upper limit"
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Sudden acceleration, sudden deceleration, or impact load type may cause "over current fault oc" or " CBC current \\
limiting fault". Please increase FF - 12 " over current suppression gain" setting value. If the adjustment is too large, \\
it may cause current oscillation. At this time, please pay attention to callback.
\end{tabular} \\
\hline
\end{tabular}
4) How to limit bus voltage under V/F control mode to prevent Over voltage fault?
\begin{tabular}{|c|c|}
\hline Description of phenomenon & In constant speed power generation loads (e.g. kowtow pumping units, stone sawing machines) and shock surge loads (e.g. high-power punching machines), over-voltage faults can easily occur during operation. \\
\hline \multirow{3}{*}{Solutions} & Constant speed intermittent power generation load: please lower FF - 14 " Over voltage suppression starting voltage" setting value (factory value 770 v ) and limit the upper limit value of bus voltage without specific requirements. it is recommended to adjust it to about 720 v . if Over voltage fault still occurs, please adjust ff - 18 " Over voltage suppression maximum rise limit frequency" setting value to 10 Hz or 20 Hz ( for example, load with long cycle power generation time such as stone sawing machine ). \\
\hline & When an Over voltage fault occurs in the sudden surge load, please lower the ff - 14 " Over voltage suppression starting voltage" setting and suggest to adjust it to about 720 v . \\
\hline & Large inertia rapid deceleration load: if the inverter is equipped with braking resistor and the input voltage level of the inverter is \(360 \sim 420 \mathrm{v}\), please adjust FF-32 " starting voltage of brake unit" setting to 690 v and F3-10 " V/F over-excitation gain" setting to 0 . If the Over voltage is still present, please lower the FF - 14 "Over voltage suppression start voltage" setting, which is recommended to be adjusted to about 740 V . \\
\hline
\end{tabular}

\subsection*{6.3 F \(0.01=2\) (V/F mode), common problem solving methods}
\begin{tabular}{|c|c|}
\hline Description of phenomenon & Solutions \\
\hline Motor oscillation during operation & O Increase the oscillation suppression parameter ( F3-11) by 10 units ( maximum adjustment to 100 ); \\
\hline High power start-up over current reporting & O Lower the torque increase (F3-01) and adjust downward by \(0.5 \%\). \\
\hline The current in operation is too high & O Set the rated voltage ( \(\mathrm{F} 1-02\) ) and rated frequency ( \(\mathrm{F} 1-04\) ) of the motor correctly; Lower the torque increase (F3-01) and adjust downward by \(0.5 \%\). \\
\hline Motor noise is high & O appropriately increase the carrier frequency value ( \(\mathrm{FO}-22\) ) in units of 1.0 kHz ; ( note: increasing the carrier frequency motor leakage current will increase ) \\
\hline Sudden unloading of heavy load to report over voltage, deceleration to report over - voltage & \begin{tabular}{l}
O Confirm that the Over voltage suppression enable ( \(\mathrm{ff}-15\) ) is set to the enable state; Increase the Over voltage suppression gain ( \(\mathrm{ff}-16 / \mathrm{ff}-17\), factory 30 ) by 10 units ( maximum adjustment to 100 ); \\
O Reduce the Over voltage suppression operating voltage ( ff - 14 factory 760 v ) and reduce it in 10 v units ( minimum adjustment to 700 v );
\end{tabular} \\
\hline Surge overload to report over - current, speed up reporting over - current & \begin{tabular}{l}
O Increase the over current suppression gain ( ff - 12 factory 20 ) by 10 units ( maximum adjustment to 100 ); \\
O Reduce over current suppression starting current ( ff - 10 factory \(150 \%\) ), decrease in \(10 \%\) ( minimum adjustment to \(50 \%\) );
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.4 Fault analysis and countermeasures}
\begin{tabular}{|c|c|c|c|}
\hline Name & Panel display & Troubleshooting of cause of failure & Countermeasures for fault handling \\
\hline \multirow{6}{*}{Accelerated over current} & \multirow{6}{*}{OC1} & There is a ground or short circuit in the frequency inverter output circuit & - Eliminate peripheral faults and detect if short circuit occurs in the motor or interrupt contactor \\
\hline & & The control mode is FVC or SVC and there is no parameter identification & - Set motor parameters according to the motor nameplate to identify motor parameters \\
\hline & & Quick acceleration condition, acceleration time setting is too short & - Increase the acceleration time \\
\hline & & Setting of over-loss rate suppression is not appropriate & \begin{tabular}{l}
- Confirm that the over current suppression function (FF - 11 ) has been enabled; \\
- The setting value of over current suppression action current (FF - 10) is too large and is recommended to be adjusted within \(120 \%\) to \(150 \%\). \\
- The setting of over-current suppression gain (FF - 12 ) is too small, and it is recommended to adjust within 20 to 40;
\end{tabular} \\
\hline & & Manual torque boost or V/F curve not appropriate & - Adjust the manual lifting torque or V/F curve \\
\hline & & Start the rotating motor & - Select speed tracking to start or wait for the motor to stop before starting \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline Name & \begin{tabular}{l} 
Panel \\
display
\end{tabular} & \begin{tabular}{l} 
Troubleshooting of cause of failure
\end{tabular} & \begin{tabular}{l} 
Countermeasures for fault handling
\end{tabular} \\
\hline & & \begin{tabular}{l} 
Subject to external interference
\end{tabular} & \begin{tabular}{l} 
- Check the historical fault record. If the current value at the time of the \\
fault is far from the value of the over current point, it is necessary to find \\
the interference source. If there is no other interference source, it may \\
be the drive board or hall element.
\end{tabular} \\
\hline Deceleration \\
over current
\end{tabular}

Chapter VI Abnormal diagnosis
\begin{tabular}{|c|c|c|c|}
\hline Name & Panel display & Troubleshooting of cause of failure & Countermeasures for fault handling \\
\hline \multirow{4}{*}{Deceleration Over voltage} & \multirow{4}{*}{OU2} & There is an external force to drag the motor during deceleration & - Cancel additional power or add braking resistance \\
\hline & & Over voltage suppression setting is not appropriate & \begin{tabular}{l}
- Confirm that the Over voltage suppression function (FF-15) has enabled; \\
- Over voltage suppression action voltage (FF - 14) set value is too large, which is recommended to be adjusted within 770 v to 700 v ; \\
- The Over voltage suppression gain (FF-15/16) is set too small and is recommended to be adjusted within 30 to 50 ;
\end{tabular} \\
\hline & & There is no additional braking unit and braking electrical resistance & - Add brake unit and resistance \\
\hline & & Deceleration time is too short & - Increase deceleration time \\
\hline \multirow{6}{*}{Constant rate Over voltage} & \multirow{6}{*}{OU3} & There is an external force to drag the motor during deceleration & - Cancel additional power or add braking resistance \\
\hline & & \multirow{5}{*}{Over voltage suppression setting is not appropriate} & - Confirm that the Over voltage suppression function (FF - 15 ) has enabled \\
\hline & & & \begin{tabular}{l}
- Over voltage suppression operation voltage (FF - 14 ) set value is too large, and it is recommended to adjust within \(770 \mathrm{v} \sim 700 \mathrm{v}\); \\
- Over voltage suppression gain (FF - 15/16) set too
\end{tabular} \\
\hline & & & - Small, and it is recommended to adjust it within 30 to 50; \\
\hline & & & - Over voltage suppression maximum rise limit frequency ( ff - 18 ) \\
\hline & & & - The setting is too small, it is recommended to adjust within 10 to 20; \\
\hline Control power failure & IPF & The bus voltage fluctuates up and down at the under voltage point & \begin{tabular}{l}
- Low input voltage or low input power. \\
- seek technical support
\end{tabular} \\
\hline Electric frequency inverter The display is normal and "EnEr"is displayed after operation.And stop the machine immediately & EnEr & The fan is damaged or jammed There is a short circuit in the wiring of the peripheral control terminal & \begin{tabular}{l}
- Replace the fan \\
- Eliminate external short circuit fault
\end{tabular} \\
\hline
\end{tabular}

\section*{Chapter VII Maintenance}
- Do not repair and maintain the equipment with electricity, otherwise there is danger of electric
shock!
- Confirm that maintenance and repair can only be carried out when the inverter bus voltage is
lower than DC 36 V , whichever is 10 minutes after the power failure. Otherwise, the residual
charge on the capacitor will cause harm to people!
- Please restore the front cover plate of the connection terminal before re - powering, otherwise
it may cause personal injury!
- All pluggable plug-ins must be plugged and unplugged in case of power failure. Otherwise,
there is a danger of causing secondary damage!
- Parameters must be set after replacing the frequency inverter, otherwise it may cause damage to other equipment in the system!
- Anti-static measures must be taken to dismantle and install the circuit board, which can prevent the damage of devices on the circuit board!
- Non-professional technical personnel shall carry out electrical detection or measurement during power-up or operation of the frequency inverter.

\subsection*{7.1 Maintenance and repair}

\subsection*{7.1.1 Routine maintenance}

Due to the influence of ambient temperature, humidity, dust and vibration, the devices inside the frequency inverter will age, causing potential failure of the frequency changer or reducing the service life of the frequency inverter. Therefore, it is necessary to carry out routine and regular maintenance and safeguard of the frequency inverter.

Routine inspection items:
1) Whether the operating environment of the frequency inverter has changed.
2) Whether the frequency inverter is overheated or has abnormal sound, and whether the frequency inverter cooling fan works normally.
3) Whether abnormal changes occur in the sound of the motor during its operation and whether vibration occurs
during its operation.
4) Whether the display value of the main operating parameters of the load is the same as the normal value.

\section*{Refer to the following table for routine inspection:}
\begin{tabular}{|c|l|l|}
\hline Inspection items & Inspection area & Inspection items \\
\hline Operating Environment & Frequency inverter installation site & Temperature, humidity, dust, metal dust, harmful gases \\
\hline \begin{tabular}{c} 
Frequency inverter \\
body
\end{tabular} & Inside the cabinet & Temperature, sound, peculiar smell \\
\hline Display & LED monitor, meter & \begin{tabular}{l} 
Whether the monitoring data is normal, such as input voltage, \\
output current, output frequency output voltage, etc.
\end{tabular} \\
\hline Loads & \begin{tabular}{l} 
Motor and its wiring and connection \\
terminals
\end{tabular} & \begin{tabular}{l} 
The temperature and sound of the motor, the temperature of \\
the wire and whether there is abnormal heat at the terminal
\end{tabular} \\
\hline
\end{tabular}

\section*{Daily cleaning:}
1) Keep the doors and windows of the frequency inverter room closed and the filtering device of the cooling system in a normal and clean state.
2) The frequency inverter should always be kept in a clean state. Validly remove dust on the surface area of the frequency inverter to prevent dust accumulation from entering the frequency inverter. Especially the metal dust

\subsection*{7.1.2 Regular maintenance}

Regular inspections should be carried out at places that are difficult to inspect during operation. The inspection shall be carried out at least ten minutes after the power failure. Refer to the following table for regular inspection items:
\begin{tabular}{|c|l|l|}
\hline Inspection items & \multicolumn{1}{|c|}{ Check content } & \multicolumn{1}{c|}{ Countermeasures } \\
\hline \begin{tabular}{c} 
Main loop terminal, \\
control loop terminal
\end{tabular} & \begin{tabular}{l} 
Whether the bolts and screws are loose, \\
and whether there are any spark marks
\end{tabular} & Processing is normal \\
\hline Fan cooling & \begin{tabular}{l} 
Whether there is dust accumulation, \\
whether the fan blade movement is blocked \\
or whether there is abnormal sound and \\
vibration, and whether the wind turbine \\
housing is overheated and deformed
\end{tabular} & Replace defective products \\
\hline Printed circuit board & \begin{tabular}{l} 
Whether there is overheating or burning. \\
Dust accumulation
\end{tabular} & \begin{tabular}{l} 
The former changes plates as the case may be, while the \\
latter blows the ash OFF with dry air of several atmospheres
\end{tabular} \\
\hline Connector & Is it loose & Reinsert \\
\hline Electrolytic capacitor & \begin{tabular}{l} 
Is there any leakage or bubbling \\
discoloration?
\end{tabular} & Replace with new products \\
\hline Heat sink & Is there dust accumulation & Dust removal, air duct cleaning, \\
\hline Insulation situation & Insulation of main circuit to ground & \begin{tabular}{l} 
Use a 500 v megohmmeter and disconnect the control circuit \\
from the main return circuit, the power supply and the load \\
from the frequency inverter
\end{tabular} \\
\hline Ambient air & Is it corroded & Transforming the environment \\
\hline
\end{tabular}

\subsection*{7.1.3 Replacement of vulnerable parts of frequency inverter}

The vulnerable parts of the frequency inverter mainly include cooling fans and electrolytic capacitors for filtering, followed by printed circuit boards and fuses, etc. their life span is closely related to the environment in which they are used and their maintenance conditions. The user can determine the replacement period based on the running time. The typical life time of these devices is:
\begin{tabular}{|c|c|}
\hline Device name & Life time \\
\hline Fan & \(2-3\) years \\
\hline Electrolytic condenser & \(4-5\) years \\
\hline Printed circuit board & \(5-8\) years \\
\hline
\end{tabular}
1) Fan cooling

Possible causes of damage: bearing wear and blade aging. Criteria: whether there is any crack in the fan blade, whether there is abnormal vibration sound when starting the machine, etc.
2) Filter electrolytic capacitor

Possible causes of damage: poor quality of input power supply, high ambient temperature, frequent load jump and electrolyte aging. Criteria: leakage of liquid, bulging of safety valve, determination of electrostatic capacitance, determination of insulation resistance

\section*{3) Printed circuit board}

Possible causes of damage: aging insulation, deterioration of devices, loose connectors.
Criteria: broken insulation, burning marks on board surface, poor contact of plug - ins.

\subsection*{7.2 Storage and storage}

After the user purchases the frequency inverter, the following points must be paid attention to for temporary storage and long-term storage:
- When storing, try to pack it into the packing box of our Company according to the original packing.
- It should be placed in a room with a temperature of \(-25{ }^{\circ} \mathrm{C} \sim 65{ }^{\circ} \mathrm{C}\) without moisture, dust, metal dust and good ventilation.
- Long - term storage will lead to deterioration of the electrolytic capacitor of the main circuit in the frequency inverter. It must be guaranteed to be energized once within one year to ensure that the electrical characteristics of the capacitor can be restored.
- Do not carry out withstand voltage test on the frequency inverter at will, which will lead to reduced service life.

\section*{Chapter VIII Peripheral equipment}

\subsection*{8.1 Peripheral equipment and optional parts connection diagram}


\subsection*{8.2 Functional description of peripheral equipment}
\begin{tabular}{|c|c|l|}
\hline Accessory name & Installation site & Brief description of function \\
\hline Fuse - less circuit breaker & Front end of input loop & \begin{tabular}{l} 
Power cut-off for downstream equipment when over current \\
occurs
\end{tabular} \\
\hline Contactor & \begin{tabular}{c} 
Between the idle switch and \\
the input side of the frequency \\
inverter
\end{tabular} & \begin{tabular}{l} 
Cut OFF the main power supply when the frequency inverter \\
fails.
\end{tabular} \\
\hline Ac input reactor & \begin{tabular}{c} 
Input side of frequency \\
inverter
\end{tabular} & \begin{tabular}{l} 
Increasing the power factor at the input side; validly eliminate \\
the higher harmonic on the input side
\end{tabular} \\
\hline Brake unit or brake resistor & \begin{tabular}{c} 
Main circuit of frequency \\
inverter
\end{tabular} & Mainly used for fast braking \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline Ac output reactor & \begin{tabular}{r} 
Between the frequency \\
inverter output side and the \\
motor. Install near the \\
frequency inverter.
\end{tabular} & \begin{tabular}{l} 
The output side of the frequency changer contains as many \\
higher order harmonic waves as possible. When the motor is \\
far away from the frequency inverter, there is a large \\
distributed capacitance in the circuit. One of the harmonics \\
may resonate in the loop, bringing about two effects: Damaging \\
the insulation performance of the motor will damage the motor \\
for a long time. A large leakage current is generated, causing \\
frequent protection of the frequency inverter. As the distance \\
between the frequency inverter and the motor exceeds 100 m, \\
it is proposed to install an output AC reactor.
\end{tabular} \\
\hline EMC input filter & \begin{tabular}{r} 
Input side of frequency \\
inverter
\end{tabular} & \begin{tabular}{l} 
Reduce the transmission and radiation interference of the \\
frequency changer to the outside; Reduce the transmission \\
and conduction interference from the power supply end to the \\
frequency inverter and improve the anti-interference capability \\
of the frequency inverter.
\end{tabular} \\
\hline Leakage protector & Input side of frequency inverter & \begin{tabular}{l} 
To protect the frequency inverter and related circuit \\
leakage
\end{tabular} \\
\hline Capacitance box & Main circuit of frequency inverter & \begin{tabular}{l} 
It is used in occasions where the power is cut OFF for \\
a long time and the motor is continuously transported.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.2.1 No fuse circuit breaker and contactor}

1 ) The basic purpose of the fuse-less circuit breaker ( commonly known as air switch ) is to quickly cut OFF the fault current when the frequency inverter has an over current fault or other circuits below it have the same fault. It is used to prevent the frequency inverter and its circuits from causing power failure and to prevent the expansion of local accidents. In general power distribution systems, each should be equipped with its rated current varying according to the capacity of the frequency inverter. Refer to the table below for the recommended selection.
2) The contactor cuts OFF its main power supply when the frequency inverter fails and is used to prevent restart after the failure.
Frequent power-up and power-down operations (less than twice per minute) or direct start-up operations of the inverter through contactors should be avoided.Because the contactor is connected between the power supply and the input of the frequency inverter, if the contactor is used to control the starting and stopping of the frequency inverter, frequent charging and discharging can easily reduce the service life of the capacitor in the frequency inverter and also damage the contactor. Switch devices such as contactors shall not be installed between the output end of the frequency inverter and the motor. If it is really necessary (for example, switching between multi-frequency inverter systems or multi-motor systems), the on-off operation of the frequency inverter shall be ensured when there is no output, otherwise the main device in the frequency inverter may be damaged.

The recommended selection is shown in the following table.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{2}{|c|}{ Inverter specification } & Fuse - less circuit breaker mccb ( a )
\end{tabular} Contactor MC ( a )

Chapter VIII Peripheral equipment
\begin{tabular}{|l|c|c|}
\hline HV480-022G3 & 63 & 63 \\
\hline HV480-030G3 & 80 & 80 \\
\hline HV480-037G3 & 100 & 100 \\
\hline HV480-045G3 & 125 & 115 \\
\hline HV480-055G3 & 160 & 125 \\
\hline HV480-075G3 & 200 & 185 \\
\hline HV480-093G3 & 225 & 225 \\
\hline HV480-110G3 & 315 & 330 \\
\hline HV480-132G3 & 315 & 400 \\
\hline HV480-160G3 & 350 & 400 \\
\hline HV480-185G3 & 400 & 500 \\
\hline HV480-200G3 & 400 & 500 \\
\hline
\end{tabular}

\subsection*{8.2.2 AC input reactor}

The device aims to change the voltage waveform distortion caused by the capacitive characteristics of the input end of the frequency inverter, validly eliminate the high-order harmonic wave on the input side and suppress the surge on the power supply side, thus improving the power factor, preventing other devices from being damaged due to the voltage waveform distortion, and eliminating the input current imbalance caused by the unbalance between the power supply phases. In addition, the higher harmonics of the power supply will cause damage to the frequency inverter.

\subsection*{8.2.3 AC output reactor}

When the connection between the frequency inverter and the motor is too long, the distributed capacitance between the cables will increase, which is easy to generate capacitive high harmonic current, which will directly cause the output over current accident of the frequency inverter. It will also cause electromagnetic interference to other devices. Therefore, adding output reactors can reduce these impacts. As for the distributed capacitance between the output wiring of the frequency inverter, if the high harmonic current content in the wiring is high, it may cause resonance and generate leakage current. Leakage currents exceeding 100 m in length of motor cables may also be large. The solution is to reduce carrier frequency operation, and a more valid measure is to install output reactors.

It is recommended to use AC reactors under the following circumstances:
1) The power supply capacity of the frequency inverter is more than ten times that of the frequency inverter.
2) The same power supply as the frequency inverter is connected with a thyristor load or a power factor compensation device controlled by a switch, etc. where the quality of the power grid is relatively poor.
3) The three-phase unbalance degree of the power supply is greater than \(3 \%\).

The recommended reactor parameters are shown in the following table.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Frequency inverter power ( kw ) \\
(Rated voltage 380V)
\end{tabular} & \begin{tabular}{c} 
Inlet wire reactor \\
Current ( a )
\end{tabular} & \begin{tabular}{c} 
Inlet wire electricity \\
Inductance ( MH )
\end{tabular} & \begin{tabular}{c} 
Output reactor electricity \\
Stream (a)
\end{tabular} & \begin{tabular}{c} 
Output reactor inductance ( \(\mu\) \\
H)
\end{tabular} \\
\hline 0.75 & 3.4 & 8.0 & 2.1 & 2100 \\
\hline 1.5 & 4.8 & 4.0 & 3.8 & 2100 \\
\hline 2.2 & 6.2 & 3.2 & 5.1 & 1450 \\
\hline 4.0 & 9.6 & 2.0 & 9 & 1100 \\
\hline 5.5 & 14 & 1.5 & 13 & 800 \\
\hline 7.5 & 18 & 1.2 & 17 & 650 \\
\hline 11 & 26 & 0.8 & 25 & 330 \\
\hline 15 & 35 & 0.6 & 32 & 250 \\
\hline 18.5 & 41 & 0.5 & 37 & 200 \\
\hline 22 & 50 & 0.42 & 45 & 180 \\
\hline 30 & 62 & 0.32 & 60 & 90 \\
\hline 37 & 80 & 0.26 & 75 & 80 \\
\hline 45 & 96 & 0.21 & 91 & 60 \\
\hline 55 & 120 & 0.18 & 112 & 40 \\
\hline 75 & 165 & 0.13 & 150 & 35 \\
\hline 93 & 180 & 0.11 & 176 & 30 \\
\hline 110 & 225 & 0.09 & 210 & 20 \\
\hline 132 & 260 & 0.08 & 253 & 16 \\
\hline 160 & 305 & 0.07 & 304 & 13 \\
\hline 185 & 350 & 0.06 & 340 & 11 \\
\hline 200 & 385 & 0.06 & 380 & 11 \\
\hline
\end{tabular}

\subsection*{8.2.4 Selection of energy consumption braking unit and braking resistance}

When the motor is operating in the braking state, the motor will generate regenerative energy, which is electrical energy converted by the mechanical energy released when the rotating speed of the rotating motor changes from high to low and fed back to the main circuit being powered, which raises the voltage of the main circuit. The amount of the energy depends on the overall system characteristics and the parameter settings of the frequency inverter. In order to make the system work properly, this part of energy is dissipated by resistance, i.e. DC energy consumption braking.
1) The selection of the resistance value of the braking resistor \(R B\)

It also indirectly determines the magnitude of the braking torque of the system. If the braking torque is too small, it will not be restrained. The rise in the voltage of the main circuit will lead to over-voltage of the main circuit of the system and trip protection. If the braking torque is too large, the stable operation of the system will be affected. In order to stabilize the braking voltage of the system, it is generally chosen to be about 1.8 times of the rated AC input voltage. For 380 v standard motor control system, the working point of energy consumption braking is generally selected to be about 700 v . If this voltage is too low, braking may occur within the maximum operating range of the power supply. If this voltage is selected too high, Over voltage protection action may occur.

Assuming KB is the mechanical energy / electrical energy conversion efficiency coefficient when the motor power is \(\mathrm{p}(\mathrm{kw})\) feedback, usually \(\mathrm{kb}=0.7\), then, when the brake operating point voltage \(\mathrm{u}=700\) volts, according to the energy conservation relation that the motor generates energy that is completely absorbed by the brake resistor, the following relation exists when the motor has \(100 \%\) brake torque:
\[
1000 \mathrm{P}^{*} \mathrm{~KB}=\mathrm{U}^{2} / \mathrm{RB}
\]

That is,
\[
R B=U^{2} / 1000 P * K B=700 / P
\]

Considering that KB is an empirical value and the duty cycle of the braking current, the actual maximum braking torque occurs at the extreme limit of \(K B=1\), at this time: \(K B m i n=0.7 * 700 / P \approx 500 / P\) at this time, the braking current reaches the maximum. If this limit is exceeded, the device will be damaged.
2) The selection of braking resistor power

For the calculation of the power dissipated by the braking resistor itself is still fully absorbed by the braking resistor according to the regenerative energy and uses thermal energy. Considering the form of release, assuming that the resistance power is PB, the braking frequency KF , and the power margin ks , then
\(P B=P * K B * K f * K s\)
If select the Ks is \(10 / 0.7\), then \(\mathrm{KB}^{*} \mathrm{Ks}=1\), then, the heat dissipation power of \(\mathrm{PB}=\mathrm{P}^{*} \mathrm{Kf}\)
Brake resistance depends on the braking frequency Kf. For general use, when occasional braking is required and braking does not need to occur frequently, Kf should be around 10\%.For different load types, the values are usually as follows:

Oil field beam pumping unit: \(10 \%-20 \%\)
Elevators and cranes: 20 \% - 40 \%
Uncoilers and winders: \(30 \%-50 \%\)
Centrifuges: 40 \% - 60 \%
Since the regenerative braking energy varies according to the inertia, deceleration time, load type, braking frequency and other factors of the driving system, the selection of braking resistance should be based on the actual usage of the user. Generally speaking, the larger the inertia of the system, the faster the deceleration and the more frequent the breaking, the smaller the resistance value selected and the greater the power of the resistor itself. The recommended values are shown in the following table.

Chapter VIII Peripheral equipment
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Power supply & \begin{tabular}{l} 
Motor power \\
(kW)
\end{tabular} & \begin{tabular}{l} 
Braking resistance \\
value (W\(/ \Omega)\) \\
\(\mathrm{Kf}=20 \%\)
\end{tabular} & \begin{tabular}{l} 
Braking resistance \\
quantity \\
\(\mathrm{Kf}=20 \%\)
\end{tabular} & \begin{tabular}{l} 
Braking resistance \\
value (W/ \(\Omega)\) \\
\(\mathrm{Kf}=40 \%\)
\end{tabular} & \begin{tabular}{l} 
Braking resistance \\
quantity \\
\(\mathrm{Kf}=40 \%\)
\end{tabular} & Note \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 0.75 & \(150 \mathrm{~W} / 800 \Omega\) & 1 & \(300 \mathrm{~W} / 800 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 1.5 & \(300 \mathrm{~W} / 400 \Omega\) & 1 & \(600 \mathrm{~W} / 400 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 2.2 & \(440 \mathrm{~W} / 250 \Omega\) & 1 & \(880 \mathrm{~W} / 250 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 4.0 & \(800 \mathrm{~W} / 150 \Omega\) & 1 & \(1100 \mathrm{~W} / 150 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 5.5 & \(1100 \mathrm{~W} / 100 \Omega\) & 1 & \(2200 \mathrm{~W} / 100 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 7.5 & \(1500 \mathrm{~W} / 75 \Omega\) & 1 & \(3000 \mathrm{~W} / 75 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 11 & \(2200 \mathrm{~W} / 50 \Omega\) & 1 & \(4500 \mathrm{~W} / 50 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 15 & \(3000 \mathrm{~W} / 40 \Omega\) & 1 & \(6000 \mathrm{~W} / 40 \Omega\) & 1 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 18.5 & \(4000 \mathrm{~W} / 30 \Omega\) & 1 & \(4000 \mathrm{~W} / 60 \Omega\) & 2 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 22 & \(4500 \mathrm{~W} / 30 \Omega\) & 1 & \(4500 \mathrm{~W} / 60 \Omega\) & 2 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 30 & \(6000 \mathrm{~W} / 20 \Omega\) & 1 & \(6000 \mathrm{~W} / 40 \Omega\) & 2 & Built - in brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 37 & \(4000 \mathrm{~W} / 28 \Omega\) & 2 & \(5000 \mathrm{~W} / 42 \Omega\) & 3 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 45 & \(4500 \mathrm{~W} / 20 \Omega\) & 2 & \(6000 \mathrm{~W} / 30 \Omega\) & 3 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 55 & \(5500 \mathrm{~W} / 16 \Omega\) & 2 & \(5000 \mathrm{~W} / 40 \Omega\) & 5 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 75 & \(5000 \mathrm{~W} / 19 \Omega\) & 3 & \(5000 \mathrm{~W} / 39 \Omega\) & 6 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 93 & \(6000 \mathrm{~W} / 15 \Omega\) & 3 & \(5000 \mathrm{~W} / 40 \Omega\) & 8 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 110 & \(5500 \mathrm{~W} / 18 \Omega\) & 4 & \(5000 \mathrm{~W} / 40 \Omega\) & 9 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 132 & \(4500 \mathrm{~W} / 22 \Omega\) & 6 & \(6000 \mathrm{~W} / 33 \Omega\) & 9 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 160 & \(4000 \mathrm{~W} / 24 \Omega\) & 8 & \(5000 \mathrm{~W} / 39 \Omega\) & 13 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 185 & \(4500 \mathrm{~W} / 20 \Omega\) & 8 & \(5000 \mathrm{~W} / 39 \Omega\) & 15 & External brake unit \\
\hline \(380 \mathrm{~V} / 3 \Phi\) & 200 & \(5000 \mathrm{~W} / 20 \Omega\) & 8 & \(5000 \mathrm{~W} / 40 \Omega\) & 16 & External brake unit \\
\hline
\end{tabular}

\section*{3) Regarding the brake unit}

No regenerative braking function is built in the 30kw G series type of frequency inverter and above specifications. When braking energy is needed, an energy consumption braking unit should be added. It should be noted when ordering. The brake unit shall be connected to the \(\Theta\) and \(\oplus\) terminals of the frequency inverter, and the brake resistor shall be connected to the external brake unit. The regenerative braking function is necessary when the braking torque of the machine itself cannot meet the application requirements, especially when it is under large inertia load, frequently broken or quickly stopped.

In situations requiring higher fast braking, even if an energy-consuming braking device is installed, the user is advised to use a feedback braking unit.

\subsection*{8.2.5 External DC reactor}

The series of frequency inverters are all externally connected with DC reactors. If necessary, please consult the distributor or the factory directly for specific specifications.

\subsection*{8.2.6 Radio noise filter}

The product is designed to meet the requirements of national standard GB/T12668.3 in terms of electromagnetic compatibility (that is, EMC refers to the ability of electrical equipment to operate in an electromagnetic interference environment, not to interfere with the electromagnetic environment, and to realize its functions stably). Frequency inverters need to meet the requirements of both electromagnetic interference and anti-electromagnetic interference. Electromagnetic interference mainly refers to radiation interference, conduction interference and harmonic interference of frequency inverters. Anti-electromagnetic interference mainly refers to the conduction immunity, radiation immunity, surge immunity, rapid burst immunity, ESD immunity and low
frequency end immunity of the power supply.
The Company's products will be installed and used according to the following instructions, and will have good electromagnetic performance in general industrial environment.

Capacitive. There are two kinds of electromagnetic interference, one is the interference of the electromagnetic noise of the surrounding environment to the frequency inverter, and the other is the interference of the noise generated by the frequency inverter to the surrounding equipment.
1) Treatment method for interference of peripheral electromagnetic equipment to frequency inverter: Generally, the electromagnetic influence on frequency inverters is caused by the installation of a large number of relays, contactors or electromagnetic brakes in the vicinity of frequency inverters. When the frequency inverter is thus disturbed and misoperation occurs, it is recommended to install a radio noise filter at the input of the frequency inverter.
2) Measures for dealing with interference of frequency inverter to peripheral equipment: This part of the noise is divided into two types: one is the frequency inverter radiation interference, while the other is the frequency inverter conduction interference. These two kinds of interference make the peripheral electrical equipment subject to electromagnetic or electrostatic induction. Thus causing misoperation of the device According to different interference situations, adopt different methods to solve the problem:
a. The instruments, receivers and sensors used for measurement are generally weak in signal. If they are relatively close to the frequency inverter or in the same control cabinet, they are prone to interference and misoperation. Therefore, they should be kept away from the interference source as far as possible. do not arrange the signal lines in parallel with the power lines, especially do not tie them together in parallel; Shielded wires for signal lines and power lines and good grounding; Ferrite magnetic rings are added to the output side of the frequency changer (the selective suppression frequency is in the range of \(30 \sim 1000 \mathrm{MHz}\) ) and \(2 \sim 3\) turns are wound in the same direction. For severe cases, the radio noise output filter can be added.
b. When the interfered equipment and the frequency inverter use the same power supply, they will cause conduction interference. If the above methods cannot eliminate interference, a radio noise filter should be installed between the frequency inverter and the power supply.
c If the length of the motor cable exceeds 100 m , it is required to add an output filter. The rated voltage of the frequency inverter is 380 v and the recommended products for the input radio noise filter are shown in the following table.
\begin{tabular}{|l|l|l|}
\hline Adaptive motor power (kw ) & Power supply capacity (kVA) & Rated input current (A) \\
\hline 0.75 & 1.5 & 3.4 \\
\hline 1.5 & 3 & 5 \\
\hline 2.2 & 4 & 5.8 \\
\hline 4.0 & 5.9 & 10.5 \\
\hline 5.5 & 8.9 & 14.6 \\
\hline 7.5 & 11 & 20.5 \\
\hline 11 & 17 & 26 \\
\hline 15 & 21 & 35 \\
\hline 18.5 & 24 & 38.5 \\
\hline 22 & 30 & 46.5 \\
\hline 30 & 40 & 62 \\
\hline 37 & 57 & 76 \\
\hline 45 & 69 & 92 \\
\hline 55 & 85 & 113 \\
\hline 75 & 114 & 157 \\
\hline 93 & 134 & 180 \\
\hline 110 & 160 & 214 \\
\hline 132 & 192 & 256 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 160 & 231 & 307 \\
\hline 185 & 242 & 350 \\
\hline 200 & 250 & 385 \\
\hline
\end{tabular}

\section*{Precautions for installation:}
1) The grounding wire of frequency inverter and other electrical products shall be well grounded; the filter must be connected to the same common ground as the PE end of the frequency inverter, otherwise it will seriously affect the EMC effect. The input filter is installed as close as possible to the power input of the frequency inverter.

Shield cables for the control signal lines and lead wires of the test lines of the frequency inverter and reliably ground the shield layer.

2 ) The power input and output lines and weak current signal lines (e.g. control lines) of the frequency inverter should not be arranged in parallel as far as possible, and should be arranged vertically when conditions permit.
3) It is recommended to use shielded cable or steel pipe to shield the power line for the output power line of the frequency inverter, and the shielding layer should be reliably grounded.
4) It is recommended to use twisted pair shielding control lines for the leads of the interfered equipment and reliably ground the shielding layer;
5) If peripheral equipment is grounded separately, interference caused by leakage current of frequency inverter grounding line can be eliminated.

\subsection*{8.2.7 Leakage protector}

There are two forms of leakage current when using frequency inverter: one is leakage current between wires, the other is leakage current to ground. The former leakage current has been explained in the section of reactor. This section only discusses leakage current to floor drain.

There may be insulation and leakage for other reasons in the frequency inverter and its accessories and related circuits. Moreover, because there are distributed capacitors in the frequency inverter, the motor and its wiring with the earth, the larger the distributed capacitor is, the larger the leakage current is. However, this series frequency inverter is designed with low noise, so the carrier frequency is higher, the higher the carrier frequency is, the greater the leakage current is. The leakage current will increase as the return current increases, so when the motor power is high, the corresponding leakage current will be high. Validly reduce the distance between the frequency inverter and the motor to reduce the distributed capacitance. The carrier frequency can be lowered to reduce leakage current, but lowering the carrier frequency will result in increased motor noise. Installing reactors is also a valid way to solve leakage current. However, there must be a current to the floor drain. Installing a leakage protector is also a valid method to protect the frequency inverter.

The leakage protector shall be installed between the incoming line end of the frequency inverter and the mccb of the air switch. The criterion for selecting its specifications is that the operating current of the leakage protector shall not be less than ten times that of the line when the frequency inverter is not used under the power frequency power supply.

\subsection*{8.2.8 Capacitance box}

This peripheral device is specially used for occasions where the power failure time is long and the motor needs continuous operation. Although this series frequency inverter has the advanced function of instant stop, the capacitor box can still be used under the special circumstances of specific requirements (the instantaneous power failure of the power supply is greater than 20 ms ). If necessary, specify the specific requirements when ordering.

\section*{Chapter IX Quality Assurance}

\subsection*{9.1 Quality commitment}

The quality assurance of the product shall be handled according to the following regulations:
The warranty scope only refers to the frequency inverter body, and the warranty period starts from the Company's delivery date.

The warranty period of the product is 18 months after purchase, even if the product fails due to the following reasons Inside, also belong to paid maintenance:
- Problems caused by incorrect operation or unauthorized self-repair and renovation;
- Problems caused by the use of frequency inverters beyond the standard specification requirements;
- Damage caused by falling or rough handling after purchase;
- Aging or failure of devices caused by use in environments that do not meet the requirements of this specification;
- The frequency inverter is damaged due to incorrect connection wires;
- Failures caused by earthquakes, fires, geomantic disasters, lightning strikes, abnormal voltages or other natural disasters and disasters.

The Company has the right to entrust others to take care of the warranty of the faulty products.
The quality assurance content that is truly the responsibility of the Company:
- Return, exchange and warranty within one month of shipment;
- Replacement and warranty within three months of shipment;
- Warranty for 18 months after shipment

Relevant service fees shall be calculated based on actual fees. If there is any agreement, the principle of agreement first shall be applied
The Company's sales, production and agency agencies throughout the country can provide after-sales service to the product.
Our Company reserves the right to interpret this agreement.

\section*{Additional instructions}

\section*{On the issue of exemption from liability}
- The Company cannot bear any liability arising from or induced by the use of the product in violation of the provisions of this specification.
- The Company is not responsible for compensation for the loss, ripple or secondary damage caused to you by the failure of the product.

\section*{Instructions for users}
- This instruction manual is only applicable to this series of products.
- The Company has lifelong responsibility for the product and provides all services related to the use of the product.
- Although the product is designed and manufactured under strict quality control, please ask our Company in advance if it is used for the following purposes that may endanger human body or its life due to its failure or operational error.
- Used for the transportation equipment
- Medical device
- Nuclear and electrical equipment
- Aviation and space devices
- Various safety devices
- Other special purposes

\section*{About hope for users}

We sincerely hope that the vast number of users will put forward their opinions or suggestions on the Company's product design, performance, quality and service, and we would appreciate it very much.

\section*{Appendix A Introduction of Communication}

HV480 provides standard RS485 communication interface and realizes communication link through MODBUS communication protocol. Through PC / PLC and other upper computers, network control of " single / Multi-Agent " can be realized ( setting frequency inverter control command and operating frequency, modifying functional parameters, monitoring frequency inverter operating status and fault information ) to adapt to specific application requirements.

\section*{1 Basic communication settings}

\subsection*{1.1 Select communication protocol}

MODBUS is only supported by default for standard products that choose communication protocols. If other communication protocols are required, you need to purchase another communication card and set FD - 00 and related parameters..
\[
\begin{array}{l|l}
\hline \text { FD - } 00 \text { communication protocol } & 0 \sim 3[0] \\
\hline
\end{array}
\]

\section*{0: MODBUS protocol}

\subsection*{1.2 Setting data transmission rate}

Data transmission rate refers to the data transmission rate between the frequency inverter and the upper computer.
\begin{tabular}{|l|l|}
\hline FD - 01 communication baud rate & \(0 \sim 0005[0005]\) \\
\hline
\end{tabular}

Protocol baud rate of MODBUS bits 0: 300 bps
1: 600BPS
2: 1200BPS
3: 2400BPS
4: 4800BPS
5: 9600BPS
6: 19200BPS
7: 38400BPS
8: 57600BPS
9: 115200BPS
1.3 Set data format
\begin{tabular}{|l|l}
\hline FD - 02 data format & \(0 \sim 3[0]\) \\
\hline
\end{tabular}

0: No check: data format \(<8, N, 2>(1\) - bit start bit, 8 - bit data bit, 2 - bit stop bit, no check)
1: Even check: data format < 8, E, \(1>\) ( 1 bit start bit, 8 bit data bit, 1 bit stop bit, even check )
2: Odd check: data format \(<8, \mathrm{O}, 1>\) ( 1 bit start bit, 8 bit data bit, 1 bit stop bit, odd check )
3. No check: data format \(<8-\mathrm{N}-1>\) ( 1 - bit start bit, 8 - bit data bit, 1 - bit stop bit, no check )

Note: The data format of the frequency inverter and the master station must be the same, otherwise normal communication will not be possible.

\subsection*{1.4 Set the local address}

In Modbus communication, a maximum of 247 units can be connected to the network. The address of each frequency inverter must be unique.

\section*{1.5 communication timeout and response}
\begin{tabular}{l|l} 
FD -05 communication timeout & \(0.1 \sim 60.0 \mathrm{~s}[0.0 \mathrm{~s}]\)
\end{tabular}
When FD - \(05=0.0\), the communication timeout detection is invalid.

When FD - 05 is non - zero, then the time between the current command and the next communication command exceeds the FD - 05 setting, then the frequency inverter will fail to communicate and the operation panel will display cof.

\section*{2 Modbus protocol description}

\section*{2.1 protocol description}

Protocol brief introduction
(1) Modbus master slave protocol. Only one device can send commands in the network at any time.
(2) The master station exchanges management information by polling the slave stations. No slave station can send messages without the approval of the master station. If there is an error in data exchange, if the master station does not receive a response, the slave station absent from the poll will be interrogated again.
(3) If the slave station cannot recognize the information sent by the master station, it will send an abnormal response to the master station.
(4) If there is no direct communication between the slave station and the slave station, one slave station's data must be read out through the master station's software and sent to another slave station Two types of dialogues can be realized between the master station and the slave station:

The master station sends a request to the slave station and waits for the slave station to respond.
The master station sends requests to all slave stations without waiting for their response broadcast mode.
Transfer
The transmission mode is RTU (remote terminal unit) mode, and the frame does not contain any message header bytes or message word segment terminators. The classic RTU frame format is shown in the following table:
\begin{tabular}{|c|c|c|c|}
\hline Slave address & Function code & Data & CRC \\
\hline 1 byte & 1 byte & \(0 \ldots 252\) bytes & CRC low bit \\
\hline
\end{tabular}
(1) Address 0 (reserved), used for broadcasting.
(2) All slave nodes must identify the broadcast address of the write function but do not need to respond.
(3) The master node does not have a specific address, only the slave node must configure the address.

RTU transmission method has four character formats, as follows:
(1) 1-bit start bit, 8 - bit data bit, 1 -bit stop bit, no check
(2) 1-bit start bit, 8 - bit data bit, 1 - bit stop bit, even check
(3) 1-bit start bit, 8 - bit data bit, 1 - bit stop bit, odd check
(4) 1-bit start bit, 8 - bit data bit, 2 - bit stop bit, no check

Characters or bytes are transmitted from left to right, as shown in the following table:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ <- least significant bit (LSB) } & \multicolumn{6}{|c|}{ Most significant bit ( msb ) - > } \\
\hline Starting bit & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & Stop bit & - \\
\hline Starting bit & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & Even check & Stop bit \\
\hline Starting bit & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & Odd check & Stop bit \\
\hline Starting bit & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & Stop bit & Stop bit \\
\hline
\end{tabular}

The above table shows that RTU transmission mode
Information frames are separated by at least at static interval of 3.5 bytes. The entire frame must be transmitted in a continuous stream of bytes. If the interval between more than two frames is less than 3.5 bytes, the receiving device will mistakenly assume that the slave station address of the second frame is the continuation of the previous
frame. CRC check failed due to frame disorder, resulting in communication failure. If the rest interval between two bytes exceeds 1.5 bytes, the receiving device will consider the information frame incomplete and discard it.

\subsection*{2.2 MODBUS communication interface}

Modbus realizes communication through RS485 interface, that is, through 485 + / 485 - link on the control panel.

\subsection*{2.3 MODBUS function and information format}

Modbus's main function is to read (read) and modify (write) parameters. Different function instructions determine different operation requests. The MODBUS function of HV480 is shown in the following table:
\begin{tabular}{|c|c|c|c|}
\hline Functional instruction & Function name & Broadcasting & Maximum value of N \\
\hline \(0 \times 03\) & Reading N register words & No & 16 \\
\hline \(0 \times 06\) & Modify a register ( power down save ) & Yes & 1 \\
\hline \(0 \times 05\) & Modify a register ( power down does not save ) & Yes & 1 \\
\hline
\end{tabular}

Different function commands determine different Modbus information formats, as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{ Slave number } & \multirow{2}{*}{\(0 \times 03\)} & Starting word address & Word number & CRC16 \\
\cline { 3 - 5 } & High | low & High | low & Low | high \\
\hline
\end{tabular}

Function instruction 3 _ host request
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Slave number } & \multirow{2}{*}{\(0 \times 03\)} & Bytes & Starting word value & - & Last word value & CRC16 \\
\cline { 3 - 7 } & & High | low & High | low & - & High | low & Low | high \\
\hline
\end{tabular}

Function command 3 _ host response
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Slave number } & \multirow{2}{*}{\(0 \times 06\)} & Starting word address & Data & CRC16 \\
\cline { 3 - 5 } & & High | low & High | low & Low | high \\
\hline
\end{tabular}

Function instruction 6 _ host request and slave response (same format)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{ Slave number } & \multirow{2}{*}{\(0 \times 05\)} & Starting word address & Data & CRC16 \\
\cline { 3 - 5 } & & High | low & High | low & Low | high \\
\hline
\end{tabular}

Function instruction 5 _ host request and slave response (same format)
Function example
Function 0x03: read \(n\) register words, read range \(1 \sim 16\)
The slave address is 01 h , and two consecutive data words are read first. The starting address is F 000 H of the communication parameter register. The structure of the frame is described as follows:

Appendix A Introduction of Communication
\begin{tabular}{|c|c|}
\hline Message start & 3.5 bytes of transmission time \\
\hline Slave address & 01 H \\
\hline Modbus function code & 03 H \\
\hline Starting address high byte & F OH \\
\hline Starting address low byte & 0 OH \\
\hline High byte of data & 00 H \\
\hline Low byte of data & 02 H \\
\hline CRC low byte & \(\mathrm{F} \mathrm{7H}\) \\
\hline CRC high byte & 0 BH \\
\hline End of message & 3.5 bytes of transmission time \\
\hline
\end{tabular}

Function instruction \(0 \times 03\) requests frame
\begin{tabular}{|c|c|}
\hline Message start & 3.5 bytes of transmission time \\
\hline Slave address & 01 H \\
\hline Modbus function code & 03 H \\
\hline High number of data bytes & 0 H \\
\hline Low number of data bytes & 04 H \\
\hline Register F000H data high byte & 00 H \\
\hline Register F00OH data high byte & 0 BH \\
\hline Register F000H data high byte & 00 H \\
\hline Register F000H data high byte & 00 H \\
\hline CRC low byte & \\
\hline CRC high byte & \\
\hline End of message & 3.5 bytes of transmission time \\
\hline
\end{tabular}

Function instruction \(0 \times 03\) slave responds to frame
Function 0x06: modify a register word.
Note: frequent write operations can damage internal memory!
(1) Execute the write command, and the data will be written into the internal register. The memory has a limit on the number of write operations. If the limit is exceeded, the memory address will be destroyed. Please avoid frequent write operations.
(2) If it is necessary to write to an address frequently, it is recommended to use function instruction \(0 \times 05\).

Example: slave address is 01 h . Now modify the contents of a register. Its communication register address is f08h, and the written content is 1388 H . The structure of the frame is described as follows:
\begin{tabular}{|c|c|}
\hline Message start & 3.5 bytes of transmission time \\
\hline Slave address & 01 H \\
\hline Modbus function code & 06 H \\
\hline Starting address high byte & FOH \\
\hline Starting address low byte & 08 H \\
\hline High byte of data & 00 H \\
\hline Low byte of data & 01 H \\
\hline CRC low byte & FAH \\
\hline CRC high byte & C 8 H \\
\hline End of message & 3.5 bytes of transmission time \\
\hline
\end{tabular}

Function 0x06 host requests
\begin{tabular}{|c|c|}
\hline Message start & 3.5 bytes of transmission time \\
\hline Slave address & 01 H \\
\hline Modbus function code & 06 H \\
\hline Starting address high byte & FOH \\
\hline Starting address low byte & 08 H \\
\hline High byte of data & 00 H \\
\hline Low byte of data & 01 H \\
\hline CRC low byte & CFH \\
\hline CRC high byte & C 8 H \\
\hline End of message & 3.5 bytes of transmission time \\
\hline
\end{tabular}

Function 0x06 slave responds.
Function 0x05: modify a register word and write it into ram.
Note: the write operation instruction only modifies ram, does not store internal memory, and does not save when power fails!

Example: slave address is 01 h , now modify the contents of a register whose communication register address is f08h, written in the content is 01 h . The structure of the frame is described as follows:
\begin{tabular}{|c|c|}
\hline Message start & 3.5 bytes of transmission time \\
\hline Slave address & 01 H \\
\hline Modbus function code & 05 H \\
\hline Starting address high byte & FOH \\
\hline
\end{tabular}

Appendix A Introduction of Communication
\begin{tabular}{|c|c|}
\hline Starting address low byte & 08 H \\
\hline High byte of data & 00 H \\
\hline Low byte of data & 01 H \\
\hline CRC low byte & BEH \\
\hline CRC high byte & C 8 H \\
\hline End of message & 3.5 bytes of transmission time \\
\hline
\end{tabular}

Function 0x05 host requests
\begin{tabular}{|c|c|}
\hline Message start & 3.5 bytes of transmission time \\
\hline Slave address & 01 H \\
\hline Modbus function code & 05 H \\
\hline Starting address high byte & F 0 H \\
\hline Starting address low byte & 08 H \\
\hline High byte of data & 00 H \\
\hline Low byte of data & 01 H \\
\hline CRC low byte & BEH \\
\hline CRC high byte & C 8 H \\
\hline End of message & 3.5 bytes of transmission time \\
\hline
\end{tabular}

Function 0x05 slave responds.
Fault code and exception code
If the slave successfully receives a request but cannot execute it, the slave will return an exception response containing the fault code and the exception generation code, informing the host of the error message.

The fault code format is in two formats:
When FD - \(06=0\), the exception code is shown in the following table:
\begin{tabular}{|c|c|c|c|}
\hline Slave code & Fault code & Exception code & CRC16 \\
\hline & 8000 H & & Low \(\mid\) high \\
\hline
\end{tabular}

The HV480 exception code is as follows:
(1) 1 = parameter cannot be modified because password protection is turned on.
(2) \(2=\) slave cannot recognize the requested function instruction. That is (not \(3,5,6\) )
(3) \(3=\mathrm{CRC}\) check error.
(4) \(4=\) slave does not contain the requested word address.
(5) \(5=\) this parameter is invalid and out of range.
(6) \(6=\) parameter is read-only and cannot be modified.
(7) \(7=\) the system locks this parameter.

When FD - \(06=1\), the exception code is shown in the following table:
\begin{tabular}{|c|c|c|c|}
\hline Slave code & Fault code & Exception code & CRC16 \\
\hline & Function instruction \(+0 \times 80\) & & Low \(\mid\) high \\
\hline
\end{tabular}
(1) \(1=\) Parameter cannot be modified because password protection is turned on.
(2) \(2=\) Slave cannot recognize the requested function instruction. That is (not \(3,5,6\) ).
(3) \(3=\) CRC check error.
(4) \(4=\) Slave does not contain the requested word address.
(5) \(5=\) This parameter is invalid and out of range.
(6) \(6=\) Parameter is read-only and cannot be modified.
(7) \(7=\) The system locks this parameter.

\subsection*{2.4 Communication mapping register address distribution}

Frequency inverter parameter register set and function code one-to-one correspondence. Read and write frequency inverter parameter registers via Modbus communication the contents in the can realize the read-write operation of the corresponding function code. The read-write characteristics and scope of the function codes follow the definition of the function parameters of the frequency inverter. The address of the frequency inverter parameter register consists of a high byte and a low byte. The high byte code function code group number and the low byte represent the function code serial number in the corresponding function code group. The corresponding relationship is shown in the following table:

Read operation and write EEPROM operation (write saved by power failure) address mapping table:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Address high byte & 0xF0 & 0x F1 & 0x F2 & 0x F3 & 0x F4 & 0x F5 & 0x F6 & 0x F7 \\
\hline Parameter group & F0 group & F1 group & F2 group & F3 group & F4 group & F5 group & F6 group & F7 group \\
\hline Address high byte & 0x F8 & 0x F9 & 0x FA & 0x FB & 0x FC & 0x FD & 0x FE & 0x FF \\
\hline Parameter group & F8 group & F9 group & FA group & FB group & FC group & FD group & FE group & FF group \\
\hline Address high byte & \(0 \times 1\) 1F & 0x A0 & 0x A1 & 0x A2 & \(0 \times 70\) & 0x AF & & \\
\hline Parameter group & FH group & Po group & P1 group & P2 group & U0 group & E0 group & & \\
\hline
\end{tabular}

Write only ram operation (write without saving when power fails) address mapping table:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Address high byte & \(0 \times 00\) & \(0 \times 01\) & \(0 \times 02\) & \(0 \times 03\) & \(0 \times 04\) & \(0 \times 05\) & \(0 \times 06\) & \(0 \times 07\) \\
\hline Parameter group & F0 group & F1 group & F2 group & F3 group & F4 group & F5 group & F6 group & F7 group \\
\hline Address high byte & \(0 \times 08\) & \(0 \times 09\) & \(0 \times 0\) A & \(0 \times 0 B\) & \(0 \times 0 C\) & \(0 \times 0 D\) & \(0 \times 0 E\) & \(0 \times 0 F\) \\
\hline Parameter group & F8 group & F9 group & FA group & FB group & FC group & FD group & FE group & FF group \\
\hline Address high byte & \(0 \times 2\) F & \(0 \times 40\) & \(0 \times 41\) & \(0 \times 42\) & & & & \\
\hline Parameter group & FH group & Po group & P1 group & P2 group & & & & \\
\hline
\end{tabular}

Note: frequent write operations can damage internal memory!
(1) Execute the write command, and the data will be written into the internal register. The memory has a limit on the number of write operations. If the limit is exceeded, the memory address will be destroyed. Please avoid frequent write operations.
(2) If it is necessary to write to an address frequently, it is recommended to use the function instruction \(0 \times 05\) or the address of the write ram operation.

\section*{Communication control frequency / torque special register address 1000 h (readable / writable)}

When frequency source F0-03 = 9, the setting frequency of the frequency inverter can be modified by writing data to this address. Scope of data - 10,000-10,000, corresponding to a given value of - \(100.00 \%-100.00 \%\).

The communication reads the 1000 h register value, and the response data word is the communication setting value.

Common monitoring address (read - only)
\begin{tabular}{|c|c|}
\hline Communication address & Address description \\
\hline 1001 H & Operating frequency ( unit: 0.01 Hz ) \\
\hline 1002 H & Bus voltage ( unit: 1v ) \\
\hline 1003 H & Output voltage ( unit: 1v ) \\
\hline 1004 H & Output current ( unit: 1 v ) \\
\hline 1005 H & Output frequency ( unit: 0.1 kw ) \\
\hline 1006 H & Output torque ( unit: \(0.1 \%\) ) \\
\hline 1007 H & running speed \\
\hline 1008 H & Output terminal status terminal status \\
\hline 1009 H & Al1 voltage ( unit: 0.01 v ) \\
\hline 100 AH & Al2 voltage ( unit: 0.01 v ) \\
\hline 100 BH & Al3 voltage ( unit: 0.01 v ) \\
\hline 100 CH & loading speed \\
\hline 100 FH & Feedback frequency ( unit: 0.1 Hz ) \\
\hline 1013 H & Encoder feedback frequency ( unit: 0.01 Hz ) \\
\hline 101 EH &
\end{tabular}

\section*{Communication control output terminal special register address 2001 H (write only)}

When the terminal output function is set to 20, the state of the output terminal can be controlled by writing a response value to the register through communication. The specific definitions of each are shown in the following table:
\begin{tabular}{|c|c|c|}
\hline Position & value & Description \\
\hline \multirow{2}{*}{0} & 0 & DO1 output is invalid \\
\cline { 2 - 3 } & 1 & DO1 output is valid \\
\hline \multirow{2}{*}{1} & 0 & Reserve \\
\cline { 2 - 3 } & 1 & Reserve \\
\hline \multirow{2}{*}{2} & 0 & Relay 1 output is invalid \\
\cline { 2 - 3 } & 1 & Relay 1 output is valid \\
\hline \multirow{2}{*}{3} & 0 & Reserve \\
\cline { 2 - 3 } & 1 & Reserve \\
\hline \multirow{2}{*}{4} & 0 & FM output is invalid \\
\cline { 2 - 3 } & 1 & FM output valid \\
\hline
\end{tabular}

Communication control AO1 output special register 2002H (write only)
When the analog output AO1 output function is selected to be 12: communication setting, the communication address can be used to realize the right the analog ao1 control of the frequency inverter defines a quantization relation of \(0 \sim 7\) FFF representing \(0 \% \sim 100 \%\).

Communication control AO2 output special register 2003H (write only)
When the analog output AO2 output function is selected to be 12: communication setting, the communication address can be used to realize the right the analog ao2 control of the frequency inverter defines a quantization relation of \(0 \sim 7\) FFF representing \(0 \% \sim 100 \%\).

Communication control FMP output special register 2004 H (write only)
When the pulse output FMP output function is selected to be 12: communication setting, through this communication address, it is possible to realize the right the frequency inverter pulse quantity FMP is controlled, and the defined quantization relation is \(0 \sim 7\) FFF, which represents \(0 \% \sim 100 \%\).

Communication status feedback special register address 3000 H (read - only).
Reading this register can monitor the current running status of the frequency inverter. This register is read - only. Each value. Define the following table:
\begin{tabular}{|c|c|}
\hline value & Description \\
\hline 1 & Forward running \\
\hline 2 & Reverse operation \\
\hline 3 & Stop \\
\hline
\end{tabular}

Communication read fault code special register address 8000 h (read - only).
By reading this register, the current fault code of the frequency inverter can be monitored. When there is no fault, the read data word is 0 .
Communication control special register address 2000 h (write only)
\begin{tabular}{|c|c|}
\hline value & Description \\
\hline 1 & Forward running \\
\hline 2 & Reverse operation \\
\hline 3 & Forward jog \\
\hline 4 & Reverse JOG \\
\hline 5 & Free stop \\
\hline 6 & Deceleration shutdown \\
\hline 7 & Fault reset \\
\hline
\end{tabular}

The control mode is \(\mathrm{FO}-02=2\). By writing the corresponding data word into the communication control command word 2000 H , the operation / stop / jog / reset of the frequency inverter can be controlled.

\subsection*{2.5 CRC 16 check method:}

CRC (cyclic redundancy check) uses RTU frame format, and the message includes error detection domain based on CRC method. The CRC field detects the content of the entire message. The CRC field is two bytes and contains 16 - bit binary values. It is calculated by the transmission device and added to the message. The receiving device recalculates the CRC of the received message and compares it with the value in the received CRC field. If the two CRC values are not equal, then there is an error in the transmission.
CRC is stored in 0xffff first, and then calls a procedure to process the consecutive 8 - bit bytes in the message with the value in the current register. Only 8bit data in each character is valid for CRC, and neither start bit nor stop bit nor parity bit is valid.

During CRC generation, each 8 - bit character is exclusive or (xor) different from the register contents. The result is shifted toward the least significant bit and the most significant bit is filled with 0 . LSB is extracted and detected. If LSB is 1 , the register is different from the preset value or if LSB is 0 , it will not be carried out. The whole process has to be repeated eight times. After the last bit (bit 8 ) is completed, the next 8 - bit byte differs from the current value of the register or separately. The value in the final register is the CRC value after all bytes in the message are executed.

When CRC is added to the message, the low byte is added first and then the high byte. The CRC simple function is as follows:
unsigned int crc_chk_value (unsigned char *data_value,unsigned char length) \{
```

unsigned int crc_value=0xFFFF;
int i;
while (length--) {
crc_value^=*data_value++;
for (i=0;i<8;i++) {
if (crc_value\&0x0001) {
crc_value= (crc_value>>1) ^0xa001;
}
else
{
crc_value=crc_value>>1;
}
}
}
return (crc_value);

```
\}

\subsection*{2.6 Set up of communication network}

Communication network as shown in the figure below, the main station is PC, PLC or other communication equipment, and the frequency inverters are slave station, sampling shielded twisted cable shall be connected. The slave station of the network terminal needs external terminal resistance, which is recommended to be 120 ohms and 0.25 W .


Network topology map.

\section*{Notes:}

Only when the frequency inverter is powered OFF can it be connected.
Networking suggestion
(1) connect RS485 link with cable shielded by double glue.
(2) Modbus cable should be far away from power drive line (at least 30 cm ).
(3) avoid crossing Modbus cable and power line. If it cannot be avoided, please cross vertically.
(4) connect the cable shielding layer to the protective ground, or connect the cable shielding layer to the equipment ground if the equipment ground is already connected to the protective ground. Do not connect RS485 network directly to ground at any point.
(5) Under any circumstances, avoid grounding wires forming a loop.

\section*{Appendix B Technical specification for HV480 series frequency inverters}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Specifications \\
\hline \multirow{21}{*}{Basic Functionalities} & Highest frequency & Vector control: \(0 \sim 300 \mathrm{~Hz} \mathrm{V/F}\) control: 0: 3200Hz \\
\hline & Carrier frequency & \begin{tabular}{l}
\[
0.5 \mathrm{kHz} \sim 16 \mathrm{kHz}
\] \\
The carrier frequency can be automatically adjusted according to the load characteristics.
\end{tabular} \\
\hline & Input frequency resolution & Digital setting: 0.01 Hz analog setting: highest frequency * 0.025 \% \\
\hline & Control mode & Open loop vector control V/F control \\
\hline & Pull-in torque & Model G machine: \(0.5 \mathrm{~Hz} / 150 \%\) \\
\hline & Speed control range & 1: 100 \\
\hline & Speed stabilization accuracy & \(\pm 0.5 \%\) \\
\hline & Torque control accuracy & \(\pm 5 \%\) \\
\hline & Overload capacity & G: \(150 \%\) rated current 60s; \(180 \%\) rated current 3s. \\
\hline & Torque increase & Automatic torque increase; The manual torque is increased by \(0.1 \%\) -
\[
30.0 \%
\] \\
\hline & V/F curve & Three ways: linear; Multipoint type; \(\quad \mathrm{N}\) - power V/F curve ( power 1.2, power 1.4, power 1.6, power 1.8, power 2 ) \\
\hline & V/F separation & Two methods: full separation and half separation \\
\hline & Acceleration and deceleration curve & \begin{tabular}{l}
Straight line or S curve acceleration and deceleration mode. \\
Four kinds of acceleration and deceleration times, \\
The acceleration and deceleration time range is 0.0 to 6500.0 S .
\end{tabular} \\
\hline & DC brake & \begin{tabular}{l}
DC braking frequency: \(0.00 \mathrm{~Hz} \sim\) maximum frequency \\
Braking time: \(0.0 \mathrm{~s} \sim 36.0 \mathrm{~s}\) \\
Brake action current value: 0.0 \% - 100.0 \%
\end{tabular} \\
\hline & JOG & JOG frequency range: \(0.00 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}\). JOG acceleration and deceleration time \(0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}\). \\
\hline & Simple PLC, multi-stage speed operation & Up to 16 - speed operation via built-in PLC or control terminal \\
\hline & Built - in PID & Closed-loop control system capable of conveniently realize process control \\
\hline & Automatic voltage regulation (AVR) & When the grid voltage changes, the output voltage can be automatically kept constant. \\
\hline & Over - voltage and over-loss rate control & Automatically limit the current and voltage during operation to prevent frequent over current and Over voltage trips. \\
\hline & Fast current limiting function & Minimize over-current faults and protect the normal operation of the frequency inverter \\
\hline & Torque limitation and control & The " excavator" feature automatically limits the torque during operation to prevent frequent over current trips; Open loop vector mode can realize torque control \\
\hline
\end{tabular}

Appendix B Technical specification for HV480 series frequency inverters
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Specifications \\
\hline \multirow{6}{*}{Individualized performance} & Outstanding performance & Using high performance current vector control technology to realize asynchronous motor control \\
\hline & Stop at once & When the instantaneous power failure occurs, the load feedback energy compensates for the voltage drop and the frequency inverter will continue to operate for a short period of time. \\
\hline & Fast current limiting & Avoiding frequent over current faults of the frequency inverter \\
\hline & Timing control & Timing control function: set the time range from 0.0 min to 6500.0 min \\
\hline & Switch between two motors & Two sets of motor parameters can realize switching control of two motors \\
\hline & Multithreaded bus support & Supports a variety of fieldbus: RS - 485, CANopen \\
\hline \multirow{5}{*}{Running} & Command source & Operation panel setting, control terminal setting, serial communication port setting. Can be switched in various ways \\
\hline & frequency source & Multiple frequency sources: digital setting, analog voltage setting, analog current setting, pulse setting, serial port setting. Can be switched in various ways \\
\hline & Auxiliary frequency source & Various auxiliary frequency sources. Can flexibly realize auxiliary frequency fine tuning and frequency synthesis \\
\hline & Input terminal & \begin{tabular}{l}
Standard 7 digital input terminals, of which 1 supports high-speed pulse input of up to 100 khz ; Three analog input terminals, one supporting only \(0 \sim 10 \mathrm{v}\) voltage input, one supporting \(0 \sim 10 \mathrm{v}\) voltage input or \(4 \sim 20 \mathrm{~mA}\) current input, \\
1 analog input terminal, supporting \(\mathrm{DC} \pm 10 \mathrm{~V}\) or \(\pm(4 \sim 20 \mathrm{~mA})\)
\end{tabular} \\
\hline & Output terminals & \begin{tabular}{l}
1 high-speed pulse output terminal ( optional open collector type ), supporting square wave signal output of \(0 \sim 100 \mathrm{khz}\) \\
1 digital output terminal \\
1 relay output terminal \\
2 analog output terminals to support \(0 \sim 20 \mathrm{ma}\) current output or \(0 \sim\) 10 v voltage output
\end{tabular} \\
\hline \multirow{7}{*}{Environment} & Place of use & Dust - free, metal dust, corrosive gases, flammable gases, oil fog, salt fog, water vapor, dripping direct sunlight - free indoor \\
\hline & Altitude & Below 1,000 meters \\
\hline & Ambient temperature & \(-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\) \\
\hline & Humidity & Less than 90 \% RH without condensation \\
\hline & Vibration & Less than 0.5 g . \\
\hline & Storage temperature & \(-25^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}\) \\
\hline & Protection grade & IP20 \\
\hline
\end{tabular}

\section*{Appendix 1 general purpose keyboard dimensions and mounting dimensions}


Fig a (keyboard operation in two ways)


Fig. b (keyboard bracket and hole size drawing)

\section*{Appendix II Plastic shell dimensions and mounting dimensions}


Fig 1(R75G3-2R2G3)


Fig 2(004G3-7R5G3)

\section*{Appendix III dimensions and mounting dimensions of sheet metal machines}


Fig 3(011G3-200G3)

\section*{Appendix C External dimensions and installation dimensions}

\section*{List of dimensions and mounting dimensions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Model} & \multicolumn{3}{|l|}{External dimension ( mm )} & \multicolumn{3}{|l|}{Installation hole location ( mm )} & & & Mounting aperture ( mm ) & \multirow[t]{2}{*}{Figure} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { N.W } \\
& \text { (kg) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { G.W } \\
& \text { (kg) }
\end{aligned}
\]} \\
\hline & W & H & D & W1 & H1 & D1 & H2 & D2 & d & & & \\
\hline \multicolumn{13}{|c|}{G1 input voltage range: Single-phase \(\mathrm{AC} 220 \mathrm{~V} \pm 15 \%, 50 / 60 \mathrm{~Hz}\)} \\
\hline HV480-R75G1 & & & & & & & & & & & 1 & 1.3 \\
\hline HV480-1R5G1 & 80 & 130 & 128 & 70 & 120 & 140 & & & 4.5 & 1 & 1 & 1.3 \\
\hline HV480-2R2G1 & 125 & 220 & 166 & 110 & 205 & 177 & & 124 & 6.5 & 1 & 2.3 & 2.8 \\
\hline \multicolumn{13}{|c|}{G2 input voltage range: Three-phase \(\mathrm{AC} 220 \mathrm{~V} \pm 15 \%, 50 / 60 \mathrm{~Hz}\)} \\
\hline HV480-R75G2 & \multirow{2}{*}{90} & \multirow{2}{*}{176} & \multirow{2}{*}{134} & \multirow{2}{*}{66} & \multirow{2}{*}{166} & \multirow{2}{*}{145} & \multirow{2}{*}{156} & \multirow{2}{*}{82} & \multirow{2}{*}{5} & \multirow{2}{*}{1} & 1 & 1.3 \\
\hline HV480-1R5G2 & & & & & & & & & & & 1 & 1.3 \\
\hline HV480-2R2G2 & \multirow[b]{2}{*}{125} & \multirow[b]{2}{*}{234} & \multirow[b]{2}{*}{177} & \multirow[b]{2}{*}{104} & \multirow[b]{2}{*}{220} & \multirow[b]{2}{*}{188} & \multirow[b]{2}{*}{205} & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{5} & \multirow[b]{2}{*}{2} & 2.3 & 2.8 \\
\hline HV480-004G2 & & & & & & & & & & & 2.3 & 2.8 \\
\hline HV480-5R5G2 & \multirow{2}{*}{170} & \multirow{2}{*}{301} & \multirow{2}{*}{188} & \multirow[b]{2}{*}{110} & \multirow[b]{2}{*}{285} & \multirow{2}{*}{193} & \multirow[b]{2}{*}{264} & \multirow{2}{*}{128} & \multirow{2}{*}{5} & \multirow{2}{*}{3} & 6.4 & 7 \\
\hline HV480-7R5G2 & & & & & & & & & & & 6.4 & 7 \\
\hline HV480-011G2 & 195 & 330 & 185 & 150 & 315 & 197 & 284 & 130 & 6 & 3 & 7.6 & 8.7 \\
\hline HV480-015G2 & \multirow[b]{2}{*}{227} & \multirow[b]{2}{*}{388} & \multirow[b]{2}{*}{196} & \multirow[b]{2}{*}{150} & \multirow[b]{2}{*}{375} & \multirow[b]{2}{*}{206} & \multirow[b]{2}{*}{350} & \multirow[b]{2}{*}{133} & \multirow[b]{2}{*}{7} & \multirow[b]{2}{*}{3} & 11 & 12 \\
\hline HV480-018G2 & & & & & & & & & & & 11 & 12 \\
\hline HV480-022G2 & \multirow[b]{2}{*}{275} & \multirow[b]{2}{*}{498} & \multirow[b]{2}{*}{210} & \multirow[b]{2}{*}{180} & \multirow[b]{2}{*}{477} & \multirow[b]{2}{*}{220} & \multirow[b]{2}{*}{459} & \multirow[b]{2}{*}{157} & \multirow[b]{2}{*}{7} & \multirow[b]{2}{*}{3} & 18.5 & 20 \\
\hline HV480-030G2 & & & & & & & & & & & 18.5 & 20 \\
\hline HV480-037G2 & 307 & 557 & 266 & 230 & 537 & 278 & 501 & 204 & 9 & 3 & 30 & 41 \\
\hline HV480-045G2 & \multirow[b]{2}{*}{377} & \multirow[b]{2}{*}{628} & \multirow[b]{2}{*}{280} & \multirow[b]{2}{*}{240} & \multirow[b]{2}{*}{600} & \multirow[b]{2}{*}{292} & \multirow[b]{2}{*}{568} & \multirow[b]{2}{*}{228} & \multirow[b]{2}{*}{9} & \multirow[b]{2}{*}{3} & 37 & 50 \\
\hline HV480-055G2 & & & & & & & & & & & 37 & 50 \\
\hline HV480-075G2 & \multirow[b]{2}{*}{500} & \multirow[b]{2}{*}{788} & \multirow[b]{2}{*}{350} & \multirow[b]{2}{*}{270} & \multirow[t]{2}{*}{762} & \multirow[t]{2}{*}{357} & \multirow[b]{2}{*}{728} & \multirow[b]{2}{*}{226} & \multirow[b]{2}{*}{13} & \multirow[b]{2}{*}{3} & 60 & 82 \\
\hline HV480-093G2 & & & & & & & & & & & 60 & 82 \\
\hline HV480-110G2 & 540 & 900 & 348 & 320 & 867 & 358 & 828 & 278 & 13 & 3 & 84 & 110 \\
\hline & & & put & tage r & Thre & ase A & 380~4 & 0 (-15\% & +10\%), 50 / & & & \\
\hline HV480-R75G3 & \multirow{3}{*}{90} & \multirow{3}{*}{176} & \multirow{3}{*}{134} & \multirow{3}{*}{66} & \multirow{3}{*}{166} & \multirow{3}{*}{145} & \multirow{3}{*}{156} & \multirow{3}{*}{82} & \multirow{3}{*}{5} & \multirow{3}{*}{1} & 1 & 1.3 \\
\hline HV480-1R5G3 & & & & & & & & & & & 1 & 1.3 \\
\hline HV480-2R2G3 & & & & & & & & & & & 1 & 1.3 \\
\hline HV480-004G3 & \multirow{3}{*}{125} & \multirow{3}{*}{234} & \multirow{3}{*}{177} & \multirow{3}{*}{104} & \multirow{3}{*}{220} & \multirow{3}{*}{188} & \multirow{3}{*}{205} & \multirow{3}{*}{1} & \multirow{3}{*}{5} & \multirow{3}{*}{2} & 2.3 & 2.8 \\
\hline HV480-5R5G3 & & & & & & & & & & & 2.3 & 2.8 \\
\hline HV480-7R5G3 & & & & & & & & & & & 2.3 & 2.8 \\
\hline HV480-011G3 & \multirow[b]{2}{*}{170} & \multirow[b]{2}{*}{301} & \multirow[b]{2}{*}{188} & \multirow[b]{2}{*}{110} & \multirow[b]{2}{*}{285} & \multirow[b]{2}{*}{193} & \multirow[b]{2}{*}{264} & \multirow[b]{2}{*}{128} & \multirow[b]{2}{*}{5} & \multirow[b]{2}{*}{3} & 6.4 & 7 \\
\hline HV480-015G3 & & & & & & & & & & & 6.4 & 7 \\
\hline HV480-018G3 & 195 & 330 & 185 & 150 & 315 & 197 & 284 & 130 & 6 & 3 & 7.6 & 8.7 \\
\hline
\end{tabular}

Appendix C External dimensions and installation dimensions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline HV480-022G3 & & & & & & & & & & & 7.6 & 8.7 \\
\hline HV480-030G3 & \multirow{2}{*}{227} & \multirow{2}{*}{388} & \multirow{2}{*}{196} & \multirow{2}{*}{150} & \multirow{2}{*}{375} & \multirow{2}{*}{206} & \multirow{2}{*}{350} & \multirow{2}{*}{133} & \multirow{2}{*}{7} & \multirow{2}{*}{3} & 11 & 12 \\
\hline HV480-037G3 & & & & & & & & & & & 11 & 12 \\
\hline HV480-045G3 & \multirow{2}{*}{275} & \multirow{2}{*}{498} & \multirow{2}{*}{210} & \multirow{2}{*}{180} & \multirow{2}{*}{477} & \multirow{2}{*}{220} & \multirow{2}{*}{459} & \multirow{2}{*}{157} & \multirow{2}{*}{7} & \multirow{2}{*}{3} & 18.5 & 20 \\
\hline HV480-055G3 & & & & & & & & & & & 18.5 & 20 \\
\hline HV480-075G3 & 307 & 557 & 266 & 230 & 537 & 278 & 501 & 204 & 9 & 3 & 30 & 41 \\
\hline HV480-093G3 & \multirow{3}{*}{377} & \multirow{3}{*}{628} & \multirow{3}{*}{280} & \multirow{3}{*}{240} & \multirow{3}{*}{600} & \multirow{3}{*}{292} & \multirow{3}{*}{568} & \multirow{3}{*}{228} & \multirow{3}{*}{9} & \multirow{3}{*}{3} & 37 & 50 \\
\hline HV480-110G3 & & & & & & & & & & & 37 & 50 \\
\hline HV480-132G3 & & & & & & & & & & & 37 & 50 \\
\hline HV480-160G3 & \multirow{3}{*}{500} & \multirow{3}{*}{788} & \multirow{3}{*}{350} & \multirow{3}{*}{270} & \multirow{3}{*}{762} & \multirow{3}{*}{357} & \multirow{3}{*}{728} & \multirow{3}{*}{226} & \multirow{3}{*}{13} & \multirow{3}{*}{3} & 60 & 82 \\
\hline HV480-185G3 & & & & & & & & & & & 60 & 82 \\
\hline HV480-200G3 & & & & & & & & & & & 60 & 82 \\
\hline \multicolumn{13}{|c|}{G4 input voltage range: Three-phase AC 460~480 (-15\% ~+10\%), 50/60 Hz} \\
\hline HV480-R75G4 & \multirow{3}{*}{90} & \multirow{3}{*}{176} & \multirow{3}{*}{134} & \multirow{3}{*}{66} & \multirow{3}{*}{166} & \multirow{3}{*}{145} & \multirow{3}{*}{156} & \multirow{3}{*}{82} & \multirow{3}{*}{5} & \multirow{3}{*}{1} & 1 & 1.3 \\
\hline HV480-1R5G4 & & & & & & & & & & & 1 & 1.3 \\
\hline HV480-2R2G4 & & & & & & & & & & & 1 & 1.3 \\
\hline HV480-004G4 & \multirow{3}{*}{125} & \multirow{3}{*}{234} & \multirow{3}{*}{177} & \multirow{3}{*}{104} & \multirow{3}{*}{220} & \multirow{3}{*}{188} & \multirow{3}{*}{205} & \multirow{3}{*}{1} & \multirow{3}{*}{5} & \multirow{3}{*}{2} & 2.3 & 2.8 \\
\hline HV480-5R5G4 & & & & & & & & & & & 2.3 & 2.8 \\
\hline HV480-7R5G4 & & & & & & & & & & & 2.3 & 2.8 \\
\hline HV480-011G4 & \multirow{2}{*}{170} & \multirow{2}{*}{301} & \multirow{2}{*}{188} & \multirow{2}{*}{110} & \multirow{2}{*}{285} & \multirow{2}{*}{193} & \multirow{2}{*}{264} & \multirow{2}{*}{128} & \multirow{2}{*}{5} & \multirow{2}{*}{3} & 6.4 & 7 \\
\hline HV480-015G4 & & & & & & & & & & & 6.4 & 7 \\
\hline HV480-018G4 & \multirow{2}{*}{195} & \multirow{2}{*}{330} & \multirow{2}{*}{185} & \multirow{2}{*}{150} & \multirow{2}{*}{315} & \multirow{2}{*}{197} & \multirow{2}{*}{284} & \multirow{2}{*}{130} & \multirow{2}{*}{6} & \multirow{2}{*}{3} & 7.6 & 8.7 \\
\hline HV480-022G4 & & & & & & & & & & & 7.6 & 8.7 \\
\hline HV480-030G4 & \multirow{2}{*}{227} & \multirow{2}{*}{388} & \multirow{2}{*}{196} & \multirow{2}{*}{150} & \multirow{2}{*}{375} & \multirow{2}{*}{206} & \multirow{2}{*}{350} & \multirow{2}{*}{133} & \multirow{2}{*}{7} & \multirow{2}{*}{3} & 11 & 12 \\
\hline HV480-037G4 & & & & & & & & & & & 11 & 12 \\
\hline HV480-045G4 & \multirow[b]{2}{*}{275} & \multirow[b]{2}{*}{498} & \multirow[b]{2}{*}{210} & \multirow[b]{2}{*}{180} & \multirow[b]{2}{*}{477} & \multirow[b]{2}{*}{220} & \multirow[b]{2}{*}{459} & \multirow[b]{2}{*}{157} & \multirow[b]{2}{*}{7} & \multirow[b]{2}{*}{3} & 18.5 & 20 \\
\hline HV480-055G4 & & & & & & & & & & & 18.5 & 20 \\
\hline HV480-075G4 & 307 & 557 & 266 & 230 & 537 & 278 & 501 & 204 & 9 & 3 & 30 & 41 \\
\hline HV480-093G4 & \multirow{3}{*}{377} & \multirow{3}{*}{628} & \multirow{3}{*}{280} & \multirow{3}{*}{240} & \multirow{3}{*}{600} & \multirow{3}{*}{292} & \multirow{3}{*}{568} & \multirow{3}{*}{228} & \multirow{3}{*}{9} & \multirow{3}{*}{3} & 37 & 50 \\
\hline HV480-110G4 & & & & & & & & & & & 37 & 50 \\
\hline HV480-132G4 & & & & & & & & & & & 37 & 50 \\
\hline HV480-160G4 & \multirow{3}{*}{500} & \multirow{3}{*}{788} & \multirow{3}{*}{350} & \multirow{3}{*}{270} & \multirow{3}{*}{762} & \multirow{3}{*}{357} & \multirow{3}{*}{728} & \multirow{3}{*}{226} & \multirow{3}{*}{13} & \multirow{3}{*}{3} & 60 & 82 \\
\hline HV480-185G4 & & & & & & & & & & & 60 & 82 \\
\hline HV480-200G4 & & & & & & & & & & & 60 & 82 \\
\hline
\end{tabular}

\section*{Appendix D HV480 series inverter specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline Frequency inverter model & \begin{tabular}{c} 
Input current \\
\((A)\)
\end{tabular} & \begin{tabular}{c} 
Output current \\
\((A)\)
\end{tabular} & \begin{tabular}{c} 
Adaptive motor \\
\((K W)\)
\end{tabular} & \begin{tabular}{c} 
Power supply capacity \\
\((H V)\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ G1 input voltage range: Single-phase AC220V \(\pm 15 \%, 50 / 60 \mathrm{~Hz}\)} \\
\hline HV480-R75G1 & 11.0 & 4.0 & 0.75 & 1 & 3.0 \\
\hline HV480-1R5G1 & 18.0 & 7.0 & 1.5 & 2 & 4.8 \\
\hline HV480-2R2G1 & 27.0 & 9.6 & 2.2 & 3 & 7.1 \\
\hline \multicolumn{7}{|c|}{ G2 input voltage range: Three-phase AC220V \(\pm 15 \%, 50 / 60 \mathrm{~Hz}\)} \\
\hline HV480-R75G2 & 5 & 3.8 & 0.75 & 1 & 3 \\
\hline HV480-1R5G2 & 5.8 & 5.1 & 1.5 & 2 & 4.0 \\
\hline HV480-2R2G2 & 10.5 & 9.0 & 2.2 & 3 & 5.9 \\
\hline HV480-004G2 & 14.6 & 13.0 & 3.7 & 5 & 8.9 \\
\hline HV480-5R5G2 & 26.0 & 25.0 & 5.5 & 7.5 & 17 \\
\hline HV480-7R5G2 & 35.0 & 32.0 & 7.5 & 10 & 21 \\
\hline HV480-011G2 & 46.5 & 45 & 11 & 15 & 30 \\
\hline HV480-015G2 & 62 & 60 & 15 & 20 & 40 \\
\hline HV480-018G2 & 76 & 75 & 18 & 25 & 57 \\
\hline HV480-022G2 & 92 & 91 & 22 & 30 & 69 \\
\hline HV480-030G2 & 113 & 112 & 30 & 40 & 85 \\
\hline HV480-037G2 & 157 & 150 & 37 & 50 & 114 \\
\hline HV480-045G2 & 180 & 176 & 45 & 60 & 134 \\
\hline HV480-055G2 & 214 & 210 & 55 & 75 & 160 \\
\hline HV480-075G2 & 307 & 304 & 75 & 100 & 231 \\
\hline HV480-093G2 & 385 & 377 & 90 & 125 & 250 \\
\hline HV480-110G2 & 430 & 426 & 110 & 150 & 280 \\
\hline
\end{tabular}

G3 input voltage range: Three-phase AC 380~440 (-15\%~+10\%), \(50 / 60 \mathrm{~Hz}\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline HV480-R75G3 & 3.4 & 2.1 & 0.75 & 1 & 1.5 \\
\hline HV480-1R5G3 & 5.0 & 3.8 & 1.5 & 2 & 3.0 \\
\hline HV480-2R2G3 & 5.8 & 5.1 & 2.2 & 3 & 4.0 \\
\hline HV480-004G3 & 10.5 & 9.0 & 4.0 & 5 & 5.9 \\
\hline HV480-5R5G3 & 14.6 & 13.0 & 5.5 & 7.5 & 8.9 \\
\hline HV480-7R5G3 & 20.5 & 17.0 & 7.5 & 10 & 11 \\
\hline HV480-011G3 & 26.0 & 25.0 & 11 & 15 & 17 \\
\hline HV480-015G3 & 35.0 & 32.0 & 15 & 20 & 21 \\
\hline HV480-018G3 & 42 & 37 & 18.5 & 25 & 45 \\
\hline HV480-022G3 & 50 & 45 & 22 & 30 & 54 \\
\hline
\end{tabular}

Appendix D HV480 series inverter specifications
\begin{tabular}{|c|c|c|c|c|c|}
\hline HV480-030G3 & 68 & 60 & 30 & 40 & 65 \\
\hline HV480-037G3 & 83 & 75 & 37 & 50 & 63 \\
\hline HV480-045G3 & 102 & 91 & 45 & 60 & 81 \\
\hline HV480-055G3 & 124 & 112 & 55 & 75 & 97 \\
\hline HV480-075G3 & 169 & 150 & 75 & 100 & 127 \\
\hline HV480-093G3 & 203 & 176 & 90 & 125 & 150 \\
\hline HV480-110G3 & 248 & 210 & 110 & 150 & 179 \\
\hline HV480-132G3 & 256 & 253 & 132 & 175 & 192 \\
\hline HV480-160G3 & 307 & 304 & 160 & 220 & 231 \\
\hline HV480-185G3 & 350 & 340 & 185 & 245 & 242 \\
\hline HV480-200G3 & 385 & 377 & 200 & 270 & 250 \\
\hline \multicolumn{6}{|c|}{G4 input voltage range: Three-phase AC 460~480 (-15\%~+10\%), 50/60 Hz} \\
\hline HV480-R75G4 & 3.4 & 2.1 & 0.75 & 1 & 1.5 \\
\hline HV480-1R5G4 & 5.0 & 3.8 & 1.5 & 2 & 3.0 \\
\hline HV480-2R2G4 & 5.8 & 5.1 & 2.2 & 3 & 4.0 \\
\hline HV480-004G4 & 10.5 & 9.0 & 4.0 & 5 & 5.9 \\
\hline HV480-5R5G4 & 14.6 & 13.0 & 5.5 & 7.5 & 8.9 \\
\hline HV480-7R5G4 & 20.5 & 17.0 & 7.5 & 10 & 11 \\
\hline HV480-011G4 & 26.0 & 25.0 & 11 & 15 & 17 \\
\hline HV480-015G4 & 35.0 & 32.0 & 15 & 20 & 21 \\
\hline HV480-018G4 & 42 & 37 & 18.5 & 25 & 45 \\
\hline HV480-022G4 & 50 & 45 & 22 & 30 & 54 \\
\hline HV480-030G4 & 68 & 60 & 30 & 40 & 65 \\
\hline HV480-037G4 & 83 & 75 & 37 & 50 & 63 \\
\hline HV480-045G4 & 102 & 91 & 45 & 60 & 81 \\
\hline HV480-055G4 & 124 & 112 & 55 & 75 & 97 \\
\hline HV480-075G4 & 169 & 150 & 75 & 100 & 127 \\
\hline HV480-093G4 & 203 & 176 & 90 & 125 & 150 \\
\hline HV480-110G4 & 248 & 210 & 110 & 150 & 179 \\
\hline HV480-132G4 & 256 & 253 & 132 & 175 & 192 \\
\hline HV480-160G4 & 307 & 304 & 160 & 220 & 231 \\
\hline HV480-185G4 & 350 & 340 & 185 & 245 & 242 \\
\hline HV480-200G4 & 385 & 377 & 200 & 270 & 250 \\
\hline
\end{tabular}

\section*{Constant pressure control solution Case V0.1 for water pump and fan}

\subsection*{1.1. Overview}

The process PID closed-loop control regulates the rotation speed of the motor and indirectly controls the water pressure or air pressure of the pipeline to be constant.

\subsection*{2.1 Two types of pressure sensors for pump and fan control}

Type 1: \(0 \sim 10 \mathrm{v}\) remote pressure gauge
Type 2: \(4 \sim 20 \mathrm{ma}\) pressure transmitter

\subsection*{3.1 Control wiring diagram}

Type 1: pressure sensor is \(0 \sim 10 \mathrm{v}\) remote pressure gauge


Type 2: the pressure sensor is a \(4 \sim 20 \mathrm{~mA}\)


\section*{Attachment 1}

\subsection*{3.2 Setting parameters}

Type 1: \(0 \sim 10 \mathrm{v}\) remote transmission pressure gauge
\begin{tabular}{|c|c|c|c|}
\hline Name & Function code & Numerical & Description \\
\hline Control mode & F0-01 & 2 & V/F control \\
\hline Main frequency source & F0-03 & 8 & PID constant pressure water supply \\
\hline PID given source & FA-00 & 0 & Pressure setting is set by FA - 01 parameter \\
\hline PID value given & FA-01 & 25\% & The set pressure is 2.5 kg . \\
\hline PID feedback source & FA-02 & 0 & The pressure gauge is fed back to Al1 ( \(0 \sim 10 \mathrm{v}\) input ) \\
\hline Name & Function code & Numerical & Description \\
\hline PID feedback range & FA-04 & 1000 & The measuring range of pressure gauge is 10 kg \\
\hline Proportional gain & FA-05 & 30 & \\
\hline Integration time & FA-06 & 1 & \\
\hline Selection of PID shutdown operation & FA-28 & 1 & Continue calculation when shutdown \\
\hline Stress wake-up option & FA-29 & 1 & Pressure wake-up is valid during sleep \\
\hline Percentage of wake-up pressure & FA-30 & 80\% & It will be awakened when pipeline pressure is lower than 2.5 * \(80 \%\) \(=2 \mathrm{~kg}\) \\
\hline Wake - up delay time & FA-31 & 1s & \\
\hline Percentage of dormant pressure & FA-32 & 100\% & When the pipeline pressure is greater than the set pressure of 2.5 kg , \\
\hline Pressure sleep delay time & FA-33 & 60s & \\
\hline
\end{tabular}

Type 2: The \(4 \sim 20\) ma pressure transmitter
Modifies the following parameters based on the type 1 parameters, and the control board Al2 jumper is shorted to the current input side
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Name } & Function code & Numerical & \multicolumn{1}{c|}{ Description } \\
\hline Al2 minimum input & F5-29 & 2.00 & 2v correspond to 4mA \\
\hline PID feedback source & FA-02 & 1 & The feedback source is AI2 ( 4 ~ 20ma current signal ) \\
\hline
\end{tabular}

\subsection*{4.1 The sleep wake-up function}

Has two sleep modes. During the control process, one of them can be selected according to actual needs.
1) Sleep according to pressure, that is, after the pressure reaches the sleep pressure threshold, the frequency inverter stops outputting after a delay time.
\begin{tabular}{|l|c|c|l|}
\hline Stress wake-up option & FA-29 & 1 & Pressure wake-up is valid during sleep \\
\hline \begin{tabular}{l} 
Percentage of wake-up \\
pressure
\end{tabular} & FA-30 & \(80 \%\) & \begin{tabular}{l} 
It will be awakened when pipeline pressure is lower than 2.5 * \(80 \%\) \\
\(=2 \mathrm{~kg}\)
\end{tabular} \\
\hline Wake - up delay time & FA-31 & 1 s & \\
\hline \begin{tabular}{l} 
Percentage of dormant \\
pressure
\end{tabular} & FA-32 & \(100 \%\) & \begin{tabular}{l} 
When the pipeline pressure is greater than the set pressure of 2.5 kg, \\
it goes to sleep after 60 s.
\end{tabular} \\
\hline
\end{tabular}
2) Sleep according to the frequency, that is, the frequency is lower than the sleep frequency threshold. After the delay time, the frequency inverter stops outputting.

\section*{Attachment 1}
\begin{tabular}{|l|c|c|l|}
\hline Stress wake-up option & FA-29 & 0 & \begin{tabular}{l} 
Pressure wake-up is invalid during sleep ( according to wake-up \\
frequency )
\end{tabular} \\
\hline Wakeup frequency & F8-14 & 40 hz & \begin{tabular}{l} 
When the set frequency is greater than 40hz, the frequency inverter wakes \\
up
\end{tabular} \\
\hline Wake - up delay time & F8-15 & 1s & \\
\hline Sleep frequency & F8-16 & 25 hz & \begin{tabular}{l} 
When the set frequency is lower than 25hz, enter the sleep state after 60 \\
seconds between F8 and 17 hours
\end{tabular} \\
\hline
\end{tabular}
3) No need to sleep
\begin{tabular}{|l|c|c|l|}
\hline Stress wake-up option & FA-29 & 0 & Pressure wake-up is invalid during sleep \\
\hline Wakeup frequency & F8-14 & 0 & \\
\hline Wake - up delay time & F8-15 & 0 & \\
\hline Sleep frequency & F8-16 & 0 & \\
\hline
\end{tabular}

\section*{Inquiry method of state parameters}

In the shutdown or running state, the \gg shift key ON the operation panel switches the contents corresponding to each byte of the function code FO-37 / 38 / 39 and can display multiple status parameters. There are 32 operating state parameters in the operating state, and the function code F0-37/38 selects whether each corresponding parameter is displayed according to the binary bit.

There are 13 shutdown state parameters under shutdown state, and the functional codes F0-39 select whether each corresponding parameter is displayed according to the binary bit.

Correspondence between decimal system and hexadecimal system:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Decimal system & 0123456789 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline Hexadecimal & 0123456789 & A & B & C & D & E & F \\
\hline
\end{tabular}

Examples:
Check the parameters in the running state through the panel: (running frequency, bus voltage, output voltage, output current, Output power, PID setting).
1. According to the correspondence between each byte in the function code F0-37 and the above parameters, the corresponding bit is set to 1 .
2. Set this binary number to FO-37 after converting it to hexadecimal. Keyboard setting value: h 001 f .
3. Use the >> key on the operation panel to switch the corresponding contents of each byte of the function code F0-37 in turn, and you can check the values of relevant parameters. Set as shown in the figure below:



\section*{Warranty agreement}

The quality assurance of the product shall be handled according to the following regulations:
The warranty scope only refers to the drive body, and the warranty period starts from the Company's delivery date.

The warranty period of the product is 18 months after purchase, If the failure is caused by the following reasons, even within the warranty period, it will be paid maintenance:
- Problems caused by incorrect operation or unauthorized self-repair and renovation;
- Problems caused by using drivers beyond standard specification requirements;
- Damage caused by falling or rough handling after purchase;
- Aging or failure of devices caused by use in environments that do not meet the requirements of this specification;
- Drive damage caused by wrong connection line;
- Failures caused by earthquakes, fires, geomantic disasters, lightning strikes, abnormal voltages or other natural disasters and disasters.

The Company has the right to entrust others to take care of the warranty of the faulty products.
The quality assurance content that is truly the responsibility of the Company:
- Return, exchange and warranty within one month of shipment;
- Replacement and warranty within three months of shipment;
- Warranty will be 18 months after shipment

Relevant service fees shall be calculated based on actual fees. If there is any agreement, the principle of agreement first shall be applied.

The Company's sales, production and agency agencies throughout the country can provide after-sales service to the product.

The power of interpretation of this agreement is vested in HNC

Version: 3.1.14
Thanks for choosing HNC product.
Any technique support, PLS feel free to contact our support team
Tel: 86(20)84898493 Fax: 86(20)48082480
URL: www.hncelectric.com
Email: support@hncelectric.com```

